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Sistemi colloidali: introduzione

Nella vita quotidiana, molti materiali non sono classificabili univocamente

come solidi o liquidi, sia perché mostrano proprietà fisiche tipiche di entram-

bi questi stati della materia, sia perché il loro comportamento cambia sotto

l’azione di forze esterne, o con il passare del tempo, oppure al variare della

concentrazione o della temperatura. Questi sistemi, in fisica, sono comune-

mente denominati materia soffice. Tipicamente si tratta di miscele di due

o più sostanze, tuttavia anche i sistemi polimerici e il vetro appartengono

a questa categoria di materiali. Una caratteristica di questi sistemi è la vi-

scoelasticità: a seconda dell’intensità della forza loro applicata, e della scala

temporale considerata, si comportano come solidi oppure come liquidi, ve-

nendo deformati in modo irreversibile o reversibile, oppure ancora iniziando

a scorrere.

Materiali molto diversi tra loro come vetri, emulsioni, paste, creme, gel e

sabbia possono presentare le stesse proprietà, pur avendo strutture mesosco-

piche molto diverse tra loro: sono microscopicamente disordinati ma possono

agire come solidi cristallini da un punto di vista macroscopico. Questi ma-

teriali sono comunemente detti jammed appunto perché si comportano come

solidi amorfi. Di fatto queste similitudini tra sistemi tanto diversi tra loro non

sono accidentali, ma possono essere fatte risalire, in seguito ad una analisi più

approfondita, a delle proprietà comuni. In generale, però, i comportamenti

microscopici di sistemi jammed diversi mostrano pure notevoli differenze tra

loro, e questa idea di una fisica comune non è stata ancora completamente

dimostrata [1].
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Nell’ambito della materia soffice, con sistemi colloidali ci si riferisce ad

una sottoclasse costituita da sospensioni di particelle, con dimensioni dell’or-

dine o inferiori al micron, in un solvente liquido che può essere considerato

come un mezzo continuo (figura 1). Molti prodotti alimentari fanno parte

di questa categoria, come salse e latte, e altri materiali di uso comune come

vernici, cosmetici o lubrificanti. Vi è anche un forte interesse teorico in questi

materiali, poiché le sospensioni colloidali sono sistemi modello per lo studio

delle proprietà termodinamiche di sistemi atomici e di processi biologici par-

ticolarmente complessi, come il ripiegamento delle proteine, fondamentali per

la vita. Ancora di più, i sistemi colloidali sono interessanti anche perché so-

no un sistema fisico per il quale è possibile verificare facilmente le previsioni

teoriche elaborate dalla Fisica Statistica.

Possono essere utilizzate particelle di forma qualunque, e diversi tipi di

interazione tra le particelle possono essere facilmente ottenuti attraverso forze

elettriche, magnetiche o entropiche. Comunemente possono essere prodotte

o acquistate a basso costo sfere, micelle, barre e vari altri tipi di particelle.

Modelli teorici di sospensioni ideali di sfere dure predicono un comportamento

di tipo gas ideale a bassa densità, il congelamento liquido-solido al diminuire

della temperatura o anche stati fisicamente più interessanti come gel e vetri

dove la dinamica è arrestata. Ciò spiega perché le sospensioni colloidali sono

comunemente utilizzate come modello per lo studio di sistemi dinamicamente

arrestati: le transizioni di fase possono essere facilmente indotte variando

parametri quali concentrazione, temperatura, pH della soluzione e, pertanto,

le previsioni possono essere facilmente verificate attraverso gli esperimenti.

Anche vari sistemi biologici possono essere modellizzati per mezzo di tali

sospensioni, riproducendo processi di invecchiamento o di self-assembly.

Delle particelle sospese in un liquido possono formare aggregati, a causa di

vari tipi di forze attrattive intermolecolari. Al fine di eliminare le interazioni

che portano all’aggregazione, le particelle vengono modificate mediante pro-

cessi detti di stabilizzazione. Essi sono principalmente di due tipi, illustrati

nella figura 2:
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Figura 1: Nanoparticelle d’oro sospese in acqua; il raggio delle particelle

determina il colore della sospensione. Da [2].

• stabilizzazione di carica; attraverso l’azione di un solvente polare, una

carica elettrica si accumula sulla superficie delle particelle, mentre ioni

di carica opposta sospesi nel liquido formano un ulteriore strato esterno

alla particella. Quindi, quando due di queste particelle si avvicinano,

l’interazione coulombiana genera repulsione;

• stabilizzazione attraverso forze entropiche; quando uno strato di catene

polimeriche circonda le particelle la vicinanza di queste ultime è ter-

modinamicamente sfavorita, in quanto la conseguente compenetrazione

dei layer polimerici di due diverse particelle corrisponderebbe ad una

diminuzione dell’entropia.

Nel primo caso, abbiamo un’interazione a lungo raggio. Utilizzando il

secondo metodo, invece, si ottiene un’interazione a corto raggio che riproduce

una parete di potenziale infinita: le particelle si comportano come sfere dure.

Particelle di silice in acqua o in glicerolo sono un esempio ben noto di si-

stema stabilizzato mediante carica elettrica, mentre sfere di PMMA rivestite

con polimeri e sospese in decalina, costituenti il principale campione esami-

nato in questo studio, sono un paradigma di una sospensione stabilizzata da

forze entropiche.

Come la concentrazione sale, le forze attrattive aumentano portando alla

formazione di un gel: questo di solito accade quando la frazione di volume
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Figura 2: Stabilizzazione di particelle colloidali. Sinistra: stabilizzazione di

carica; Destra: stabilizzazione mediante forze entropiche. Da [3].

è superiore al 50 − 60%. Questo processo viene chiamato flocculazione, -

aggregazione o gelificazione, e può verificarsi se il campione non è conservato

con cura. Ad esempio, se il contenitore è lasciato aperto nel corso di una

misurazione, il solvente evapora distruggendo l’invarianza temporale.

Microfluidica applicata agli esperimenti con ra-

diazione X

Il termine microfluidica indica un gruppo di tecniche sperimentali che

implicano l’uso di siringhe e tubi (con un raggio che va da 1µm fino a 1mm)

per fare fluire il campione nel corso dell’esperimento, a volte mescolando

i vari componenti del campione direttamente nel tubo, subito prima della

misura. Ci sono diverse ragioni, nello studio della materia soffice, per avere

il campione che fluisce in un tubo invece di contenerlo in un capillare o in

una provetta:

• evitare effetti spuri, dati da cavitazione e da altre modificazioni inde-

siderate delle proprietà del sistema indotte dal forte fascio di raggi X,
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Figura 3: Esperimento di microfluidica: gocce di campione scorrono in un

flusso di olio.

fornendo continuamente nuovo campione; sono necessari solamente una

siringa e un tubo.

• misurare facilmente con i trascorrere del tempo processi come gelifica-

zione, reazioni chimiche o transizioni di fase con un semplice apparato

sperimentale; utilizzando una siringa per ogni componente e connessio-

ni a T è possibile mescolare il campione direttamente nel tubo, defi-

nendo questo istante come t0 = 0s. In questo modo la distanza tra il

punto di miscelazione e la posizione del fascio è direttamente legata al

tempo trascorso t1;

• misurare le proprietà di un campione confinato in un volume ristretto

creando gocce di campione (ad esempio una sospensione colloidale, figu-

ra 3) che scorrono in un mezzo liquido (ad esempio olio); per realizzare

una configurazione adatta allo scopo sono necessarie almeno due sirin-

ghe, una per l’olio e una per il campione, connesse a due tubi disposti

uno dentro l’altro.

Tutti questi diversi tipi di risultati può essere raggiunti utilizzando com-

ponenti, come tubi e siringhe, poco costose e facili da reperire. Tuttavia, un
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punto importante da discutere è fino a che punto la presenza del flusso modi-

fica la dinamica intrinseca delle particelle studiate. Il presente lavoro di tesi

affronta questo punto. La risposta ottenuta è molto semplice: in condizioni

sperimentali ragionevoli, la presenza del flusso non influenza le proprietà di-

namiche osservate se il momento scambiato ~Q è perpendicolare alla direzione

del flusso. L’uso di questo tipo di configurazione, chiaramente, facilita la

realizzazione pratica di tali esperimenti.
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Risultati sperimentali

Struttura di sospensioni di sfere dure

Dopo una prima caratterizzazione della sospensione colloidale conside-

rata, costituita da sfere dure di PMMA in decalina, avendo misurato la sua

viscosità e il coefficiente di diffusione di Einstein-Stokes D0, abbiamo iniziato

l’analisi della sue proprietà statiche e dinamiche in funzione della concentra-

zione di particelle, misurata come frazione di volume Φ. La caratterizzazione

della struttura del campione è stata effettuata mediante SAXS (Small An-

gle X-ray Scattering) presso le beamline ID10A e ID02 di ESRF: il nostro

primo obiettivo consiste nel conoscere esattamente che tipo di sospensione

stiamo esaminando. Come illustrato nel capitolo 2.1, infatti, la distribuzione

delle dimensioni delle particelle e la volume frazione della sospensione sono

entrambe misurabili attraverso questa tecnica.

Durante la preparazione del campione, particolare cura è stata posta nel-

l’evitare qualsiasi alterazione del valore medio e della deviazione standard

del raggio delle particelle. La preparazione di campioni ad alta concentra-

zione mediante centrifugazione può portare alla presenza di un gradiente di

dimensioni nel sedimento: di conseguenza, durante la successiva eliminazione

del solvente presente in superficie, le particelle più piccole possono essere ac-

cidentalmente eliminate. Pertanto, la centrifugazione non è stato utilizzata

nel corso della preparazione dei campioni.

Come rivelatore abbiamo utilizzato un sensore CCD, in virtù del grande

intervallo di momento trasferito studiato con un’unica immagine e dell’al-

9



ta risoluzione: con una scelta giudiziosa della distanza campione-rivelatore

(d = 2.19m) è possibile eseguire misure in una regione di Q che va da

Q ≃ 0.001Å−1 fino a Q ≃ 0, 03Å−1.
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Figura 4: Misura SAXS. In alto a sinistra: vengono misurate 300 immagini,

quindi si calcola la loro media. In alto a destra: intensità media in funzione

del tempo. In basso: media radiale dell’intensità in funzione di Q.

Un piccolo pezzo di metallo sagomato, detto beamstop, è interposto tra il

fascio X e il rivelatore, impedendo il danneggiamento di quest’ultimo. Dato

che il limite inferiore di Q è determinato dalla posizione del beamstop rispetto

al fascio diretto, a volte la misurazione non raggiunge valori Q sufficiente-

mente piccoli rendendo impossibile ottenere informazioni sulla struttura del

campione. In questi casi, abbiamo integrato i dati con quelli misurati utiliz-

zando un fototubo, anche se in questo caso la risoluzione è inferiore. Utiliz-
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zando il CCD (figura 4), normalmente vengono raccolti 300 fotogrammi al

fine di compensare il limitato range dinamico del detector. Le immagini sono

state poi sommate insieme pixel per pixel, ottenendone una unica. Una me-

dia radiale viene eseguita attorno al punto dove incide il fascio, che si ottiene

misurando una immagine senza beamstop ma con alcuni attenuatori inseriti

nel percorso del fascio. I pixel difettosi sono stati mascherati, e una misura

effettuata senza fascio è stata sottratta ai dati ottenuti al fine di eliminare

eventuali effetti spuri. L’intensità di radiazione diffusa in funzione di Q ot-

tenuta in questo modo può essere fittata con i modelli descritti nel capitolo

2.1, i quali danno accesso a tutti i parametri che descrivono il campione da

un punto di vista statico come il raggio e la concentrazione, ottenendo inoltre

una misura del fattore di struttura S(Q), che sarà utile nelle analisi successi-

ve. L’importanza di questo fattore, contenente informazioni sulle interazioni

interparticellari, aumenta con il crescere della frazione di volume Φ, mentre

è praticamente uguale a uno a basse concentrazioni.

Non è ancora possibile, tuttavia, confrontare direttamente i risultati del

nostro esperimento con il modello teorico, in quanto è necessario sottrarre il

contributo alla diffusione dovuto sia il solvente che ai tubi di kapton. Inoltre,

è necessario tenere conto dell’influenza della risoluzione strumentale sulla mi-

sura dell’intensità I(Q). Per fare ciò, in letteratura solitamente si esegue una

convoluzione del fattore di forma di una sfera dura con una curva Gaussiana,

di larghezza pari all’incertezza del momento trasferito, e quindi all’incertezza

dell’energia dei fotoni incidenti.

I dati sono stati fittati con l’espressione, riportati nel capitolo 2.1,

I(Q) = K S(Q) P (Q) (1)

dove K è un fattore di scala, P (Q) è il fattore di forma di una sfera e

S(Q) è il fattore di struttura. Il valore medio R e la deviazione standard

σ = R/
√
Z + 1 del raggio R delle particelle sono i parametri del fit, mentre

la frazione di volume del campione Φ è un parametro variato manualmente.

La determinazione del fattore di struttura è il principale obiettivo di questa

misura: esso può essere ottenuto calcolando il rapporto tra I(Q) e il fattore
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di forma riscalato K P (Q), convoluto con un profilo gaussiano per tenere

conto della presenza di un’incertezza nella determinazione dell’energia dei

fotoni incidenti, e quindi nella determinazione di Q. Possiamo chiamare la

grandezza cos̀ı ottenuta fattore di struttura misurato. Questa curva può

essere paragonata con la curva S(Q) prevista, nell’approssimazione Percus-

Yevich, per particelle sferiche che interagiscono come sfere dure.

Un altro modello che potrebbe essere usato durante l’analisi è l’espres-

sione di I(Q), riportata in [4], dove non si ha fattorizzazione nei due fattori

S(Q) e P (Q): un fit eseguito usando questo modello non consente la deter-

minazione del fattore di struttura, anche se R e Φ possono essere determinati

con maggiore precisione.

Nelle figure 5a, 6a, 7a, 8a, 9a, 10a and 10a sono riportati le misure SAXS

e i relativi fit relativi a campioni caratterizzati da una frazione di volume

pari fino a circa il 50%. Le figure 5b, 6b, 7b, 8b, 9b, 10b and 11b riportano

i fattori di struttura misurato e previsto.

0.000 0.005 0.010 0.015 0.020

10−7

10−6

Q(A−1)

I(
Q

) 
Q

4

 R=88.1 nm 
 Z=99 
 Phi=10% 

(a)

 0  5  10
0.0

0.5

1.0

1.5

QR

S
(Q

)

(b)

Figura 5: A631D D. a) Dati fittati solamente nella regione verde, con R =

(881 ± 3)Å; Z = 99 ± 6; Φ = 9.5%; b) Fattore di struttura: i punti indicano

il fattore di struttura misurato, la curva continua quello atteso.
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Figura 6: A631D C. a) Dati fittati solamente nella regione verde, con R =

(893±3)Å; Z = 105±6; Φ = 19.5%; b) Fattore di struttura: i punti indicano

il fattore di struttura misurato, la curva continua quello atteso.
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Figura 7: A631D E. a) Dati fittati solamente nella regione verde, con R =

(908± 3)Å; Z = 99± 4; Φ = 21.5%; b) Fattore di struttura: i punti indicano

il fattore di struttura misurato, la curva continua quello atteso.
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Figura 8: A631D P. a) Dati fittati solamente nella regione verde, con R =

(905±3)Å; Z = 107±4; Φ = 30.5%; b) Fattore di struttura: i punti indicano

il fattore di struttura misurato, la curva continua quello atteso.
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Figura 9: A631D F. a) Dati fittati solamente nella regione verde, con R =

(901± 3)Å; Z = 96± 2; Φ = 35.2%; b) Fattore di struttura: i punti indicano

il fattore di struttura misurato, la curva continua quello atteso.
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Figura 10: A631D A. a) Dati fittati solamente nella regione verde, con R =

(901 ± 3)Å; Z = 90 ± 5; Φ = 44%; b) Fattore di struttura: i punti indicano

il fattore di struttura misurato, la curva continua quello atteso.
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Figura 11: A631D G. a) Dati fittati solamente nella regione verde, con R =

(896± 5)Å; Z = 84± 8; Φ = 50.5%; b) Fattore di struttura: i punti indicano

il fattore di struttura misurato, la curva continua quello atteso.
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Come si può vedere, il fit è migliore nella regione dove il momento tra-

sferito è elevato, mentre ci sono alcuni problemi nella regione a piccoli Q. Il

problema è che la curva teorica riesce a descrivere bene solo una delle due

regioni. Il nostro tentativo di superare questo problema operando una con-

voluzione del modello con una gaussiana per tenere conto della risoluzione

in energia non è sufficiente. Effettuando il fit nella regione Q > 0.005Å−1 si

ottiene un valore errato dell’intensità del picco di struttura. D’altro canto,

cercando di ottenere un fit migliore nella regione a piccolo Q porta a cattivi

risultati per la restante parte della curva; è pertanto necessario un approccio

equilibrato. Abbiamo deciso di limitare il fit solo ai primi due massimi del-

l’intensità che seguono il picco di struttura. Dato che nell’analisi seguente

alcune delle principali informazioni di cui avremo bisogno sono le posizioni

dei massimi, e dato che possiamo accettare qualche discrepanza nella deter-

minazione delle intensità, abbiamo cercato di ottenere dei valori di media

e deviazione standard del raggio delle sfere compatibili tra tutti i campio-

ni. I valori della concentrazione ricavati dal fit sono compatibili con i valori

previsti.

sample nominal Φ Φ R (Å) Z σ (Å)

A361D D 10% 9.5% 881 ± 3 99 ± 6 88 ± 3

A361D C 19% 19.5% 893 ± 3 105 ± 6 86 ± 3

A361D E 22% 21.5% 908 ± 3 99 ± 4 90 ± 2

A361D F 30% 30.5% 905 ± 3 107 ± 4 87 ± 2

A361D P 35% 35.2% 901 ± 3 96 ± 2 91 ± 2

A361D A 45% 44% 901 ± 3 90 ± 5 94 ± 3

A361D G 50% 50.5% 896 ± 5 84 ± 8 97 ± 5

Abbiamo ottenuto un fattore di struttura misurato diverso dalla previ-

sione teorica per una sospensione di sfere dure ottenuta dall’approssimazione

di Percus-Yevich. Ciò è probabilmente un’indicazione che tale modello non è

applicabile al nostro sistema, anche se una spiegazione alternativa potrebbe

essere correlata a problemi sperimentali a bassi valori di Q. In ogni caso,

una prova che il nostro campione è effettivamente fatto di sfere deriva dal
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confronto del raggio ottenuto dal fit con il cosiddetto raggio idrodinamico

Rh = kBT
6πηD0

. Nel caso del nostro campione, Rh ≃ 930 Å: dal momento che

questo valore è leggermente superiore al valore medio di R ricavato dal fit

dei dati SAXS, il nostro campione probabilmente non contiene sfere rotte o

altre particelle non sferiche.

Dinamica di sospensioni di sfere dure

La seconda parte di questo lavoro è focalizzata sulla dinamica delle parti-

celle e sulle interazioni interparticellari. Poiché stiamo eseguendo misurazioni

in una regione dello spazio reciproco dove QR < 10, stiamo principalmen-

te prendendo in considerazione le interazioni tra particelle separate da una

distanza d > 2πR
10

= 0.6R ≃ 60nm. La dinamica delle nanoparticelle in un

mezzo continuo presenta tre diversi regimi:

• il regime balistico, se si considera un tempo abbastanza breve da poter

considerare le particelle colloidali, dopo una collisione, come particelle

libere;

• il regime browniano a tempi brevi, quando la particella si muove attorno

alla sua posizione di equilibrio: in questo caso il moto è diffusivo e non

è stato rallentato da interazioni interparticellari;

• il regime diffusivo a tempi lunghi, quando la particella si muove su di-

stanze maggiori ed il suo movimento è influenzato dal cosiddetto effetto

gabbia dovuto alla presenza delle particelle circostanti.

Questo lavoro è focalizzato solo sul regime a tempi brevi. La separazione

tra i vari regimi è data ovviamente dalla scala temporale che caratterizza la

diffusione, e dal suo confronto con alcune costanti di tempo definite da alcuni

parametri statici come raggio (R) e massa (m) delle particelle, temperatura

(T ) e viscosità (η). Possiamo definire due costanti di tempo particolarmente

rilevanti:
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• la prima, τB = mD0/kBT ≃ 1ns, è il cosiddetto tempo di rilassamento

browniano: questo è il tempo necessario ad una particella, dopo una

collisione, per perdere un’energia comparabile con l’energia di eccita-

zione termica kBT interagendo con il solvente. Pertanto, questo è il

tempo dopo il quale ha significato definire il coefficiente di diffusione;

• la seconda costante di tempo è pari al tempo che necessita ad una

particella per diffondere liberamente su una distanza pari al suo raggio,

e può dunque essere definito come τR = R2/D0 ≃ 9ms.

Quando τB < τ < τR si ha il regime a tempi brevi, il regime a tempi

lunghi si verifica quando τ > τR. Lo studio del regime balistico non è possibile

mediante XPCS, in quanto rivelatori in grado di raggiungere tempi di misura

inferiori a τB non sono disponibili. In breve, stiamo osservando la dinamica

e le interazioni tra particelle separate da distanze di gran lunga maggiori

rispetto al loro raggio che hanno luogo durante un tempo più breve del tempo

necessario ad una particella per diffondere su una distanza comparabile con

il suo raggio.

La misura delle funzioni di correlazione mediante XPCS è stata eseguita

a diversi valori di Q, corrispondenti ad una regione che arriva fino al secondo

massimo del fattore di struttura, ossia dove QR < 6. Da un lato, in campioni

con concentrazione molto bassa la funzione di correlazione è un decadimento

esponenziale:

g(2)(τ) = 1 +

∣∣∣∣∣
F ( ~Q, t)

F ( ~Q, 0)

∣∣∣∣∣

2

= 1 + e−2D0Q2t.

dove D0 è il coefficiente di diffusione di Einstein-Stokes.

D’altro canto, a concentrazioni più elevate, questa espressione non è più

valida: è necessario introdurre una dipendenza da Q nel coefficiente di dif-

fusione DS(Q). Se si riporta in scala semi-logaritmica, come in figura 12,

una funzione di correlazione misurata a una concentrazione elevata, possia-

mo vedere che essa presenta due diverse scale temporali. Questo richiama la

presenza dei due diversi regimi di diffusione, precedentemente denominati a
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Figura 12: Funzioni di correlazione a Φ = 10% e a Φ = 50%. Nella curva

con Φ elevato, sono chiaramente visibili due scale temporali: il fit è eseguito

solamente sulla regione a tempi brevi.

tempi brevi e a tempi lunghi, separati dal tempo caratteristico τR. Pertan-

to, attraverso un fit esponenziale sui dati nella regione τ < τR si ottiene una

misura di DS(Q). Questa misura è stata eseguita a diverse velocità del flusso

di campione, che vanno da zero fino a 800µL/h e anche 1600µL/h. Se i dati

ottenuti per piccoli valori della velocità di flusso sono compatibili con quelli

misurati senza flusso, non sono presenti né cavitazione né effetti di ageing.

Inoltre, se i dati misurati a bassi valori della velocità di flusso sono coerenti

l’uno con l’altro, mentre la curva a flusso zero mostra un comportamento

diverso, ciò significa che questa ultima non è completamente affidabile. Velo-

cità di flusso eccessive comportano la presenza nelle funzioni di correlazione

di effetti indotti dal flusso stesso, e non sono quindi adatti per le successive

analisi.
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Nel corso dell’analisi di DS(Q), è utile mettere da parte il contributo

delle interazioni dirette, rappresentato dal fattore di struttura S(Q) che ab-

biamo ottenuto attraverso la misura SAXS. Dal momento che si osservano

i moti delle particelle su tempi più brevi del tempo τR necessario alle sfe-

re per diffondere su una distanza pari al loro raggio, possiamo considerare

le nanoparticelle come in moto attorno alle loro posizioni di equilibrio. In

questa situazione, effetti strutturali e idrodinamici possono essere separati

fattorizzando DS(Q)/D0, come suggerito in [5]:

DS(Q)

D0
=
H(Q)

S(Q)
(2)

D0 è stato misurato mediante DLS, S(Q) mediante SAXS e DS(Q) me-

diante XPCS; abbiamo ricavato una misurazione della cosiddetta funzione

idrodinamica H(Q), rappresentante l’interazione interparticellare mediata

dal movimento del solvente come effetto del movimento delle altre particelle

e della particella stessa.

 0  5  10
0.0

0.5

1.0

QR

H
(Q

)

Φ = 0.05

Φ = 0.15

Φ = 0.25

Φ = 0.35

Φ = 0.45

Figura 13: Previsione teorica dell’andamento della funzione idrodinamica a

varie concentrazioni.
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Un modello per H(Q) in funzione della frazione di volume della sospensio-

ne è stato sviluppato da Beenakker e Mazur: nell’articolo [6] hanno studiato

il contributo dovuto al moto della stessa particella in esame, che dà luogo

ad un termine indipendente da Q, mentre in [7] si sono prese in considera-

zione interazioni idrodinamiche a molti corpi, che danno invece origine ad

un contributo dipendente da Q. Il calcolo è lungo e abbastanza complicato,

e non è riportato qui: comunque, l’espressione finale di H(Q) richiede una

integrazione numerica che è stata eseguita come parte dei compiti del pre-

sente lavoro di tesi. I risultati sono riportati in figura 13, simile alla figura 2

riportata in [7].
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Figura 14: A361D D, Φ = 9.5%. Viene riportato DS(Q) normalizzato a

D0 in funzione del momento trasferito. Anche il fattore di struttura S(Q)

misurato è riportato per un rapido confronto.
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Figura 15: A361D C, Φ = 19.5%. Viene riportato DS(Q) normalizzato a

D0 in funzione del momento trasferito. Anche il fattore di struttura S(Q)

misurato è riportato per un rapido confronto.
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Figura 16: A361D E, Φ = 21.5%. Viene riportato DS(Q) normalizzato a

D0 in funzione del momento trasferito. Anche il fattore di struttura S(Q)

misurato è riportato per un rapido confronto.
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Figura 17: A361D P, Φ = 30.5%. Viene riportato DS(Q) normalizzato a

D0 in funzione del momento trasferito. Anche il fattore di struttura S(Q)

misurato è riportato per un rapido confronto.
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Figura 18: A361D F, Φ = 35.2%. Viene riportato DS(Q) normalizzato a

D0 in funzione del momento trasferito. Anche il fattore di struttura S(Q)

misurato è riportato per un rapido confronto.
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Figura 19: A361D A, Φ = 44.0%. Viene riportato DS(Q) normalizzato a

D0 in funzione del momento trasferito. Anche il fattore di struttura S(Q)

misurato è riportato per un rapido confronto.
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Figura 20: A361D G, Φ = 50.5%. Viene riportato DS(Q) normalizzato a

D0 in funzione del momento trasferito. Anche il fattore di struttura S(Q)

misurato è riportato per un rapido confronto.

24



Risultati

Nelle figure dalla 14 alla 20, ciascuna riferita a un diverso campione, viene

riportata la funzione DS(Q) normalizzata al coefficiente di Einstein-Stokes,

cos̀ı come il corrispondente fattore di struttura. Sono stati evidenziati i dati

misurati con il campione che scorreva a 100µL/h, poiché tale velocità di flusso

soddisfa i requisiti riportati sopra: cavitazione e effetti di invecchiamento

indesiderati sono completamente assenti.

Si noti che in ogni figura il primo minimo relativo corrisponde alla po-

sizione del massimo di S(Q), in posizione Qmax: la dinamica misurata in

corrispondenza del picco di struttura è più lenta. Le fluttuazioni di densità

della sospensione con lunghezza d’onda 2π
Q

decadono in modo esponenziale, ad

eccezione di quelle con una lunghezza d’onda paragonabile a 2π
Qmax

che paiono

invece persistere: il loro decadimento avviene con un tempo caratteristico

più grande. Questo effetto è molto simile al de Gennes narrowing, effetto

ben noto in letteratura [8]. Esso consiste in un restringimento in energia

del’intensità di neutroni diffusi quasielasticamente in funzione del momento

trasferito Q in correspondenza del massimo del fattore di struttura S(Q).

L’origine fisica di questo effetto giace nel fatto che la dinamica del sistema

tende a rallentare in corrispondenza di eventuali periodicità; in altre parole,

il sistema tende a preservare la sua coerenza a quel particolare valore di Q

rallentando la dinamica corrispondente.

Come si può vedere nelle figure 14 e 15, i campioni a bassa concentrazione

A361D D e A361D C mostrano problemi di dispersione dei dati tra le curve

relative a velocità di flusso diverse. In particolare, non è presente un anda-

mento oscillante comune nei dati relativi ad ogni velocità di flusso, mentre i

campioni con concentrazione superiore non presentano questo problema. In

questi ultimi le oscillazione di S(Q) e DS(Q) sono in chiaro accordo. Per que-

sto motivo il campione A361D C non è stato considerato nel corso dell’analisi

della funzione idrodinamica H(Q), dal momento che la sua concentrazione

Φ ≃ 19% è molto simile a quella del campione A361D E, Φ ≃ 21%.

Possiamo ora calcolare la funzione idrodinamica H(Q) introdotta dal-
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volume fraction
 Φ = 9.5%
 Φ = 21.5%
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Figura 21: H(Q) a varie concentrazioni. Le linee continue rappresentano le

previsioni teoriche di Beenakker e Mazur. Le barre d’errore derivano dall’a-

nalisi statistica delle funzioni di correlazione (capitolo 3.2) e dei fattori di

struttura S(Q).

l’espressione (2) per rappresentare ogni altro contributo al coefficiente di

diffusione, in particolare le interazioni mediate attraverso il solvente liquido,

chiamate interazioni idrodinamiche. Nella figura 21 sono riportati i dati mi-

surati a diverse concentrazioni con una velocità di flusso di 100µL/h. L’unica

eccezione è costituita dal campione A361D E poiché, anche se si tratta di un

campione a bassa concentrazione in linea di principio non soggetto a proble-

mi di cavitazione, per esso si ha che la curva misurata a 100µL/h presenta

una dipendenza da Q non compatibile con i dati misurati a flusso nullo. Per

il campione A361D E sono stati utilizzati i dati misurati a campione fermo.

I valori di H(Q) sono stati confrontati le curve teoriche calcolate per i

rispettivi valori di R, Z e Φ, sulla base delle equazioni riportate in [6] e in

[7]. Risulta evidente come a bassa concentrazione la funzione idrodinamica
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teorica sia non strutturata, mentre ad alte frazioni di volume la curva teorica

H(Q) presenta un primo massimo a QR ≃ 3 e un successivo minimo a QR ≃
4.5; questo comportamento è ragionevolmente ben riprodotto dai nostri dati

sperimentali. A Φ = 44%, la dinamica del campione comincia ad arrestarsi,

infatti è possibile vedere una chiara deviazione dei dati dal comportamento

previsto. A Φ = 50% il campione non è più fluido ma appare più come un

gel; ovviamente, applicare ad un gel una teoria sviluppata per le particelle in

sospensione in un liquido porta a conclusioni teoriche completamente errate.
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Chapter 1

Introduction: colloidal systems

in soft matter

In everyday life, there is a great variety of materials whose classification

as solid or liquid systems is debatable, mainly because they show physical

properties typical of both these states of matter, or because their behaviour

under external forces changes either with time, concentration or temperature.

These systems, in physics, are commonly referred to as ”soft condensed mat-

ter”. Typically, they consist of mixtures of two or more substances, although

also polymers and glass belong to this category. One characteristic of these

systems is viscoelasticity: depending on how strong the applied stress is, and

on the time-scale involved, they behave like solids or like liquids and they

can be deformed in either an irreversible or reversible way, or flow.

Very different materials like glasses, emulsions, pastes, creams, gels and

sand may show the same properties, while having very different mesoscopic

structures: they are microscopically disordered, yet acting like solids from

a macroscopic point of view. These materials are usually referred to as

”jammed” because they can act like amorphous solids. As a matter of fact

these similarities are not accindental, but they can be traced back to deeper

common properties. However, microscopic behaviours of ”jammed” systems

show great differences as well, and this idea of a common underlying physics
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has not been completely proved yet [1].

Among soft condensed materials, ”colloidal systems” is the name of a

subclass that consists of a suspension of particles with micron or submicron

size into a liquid solvent that can be considered as a continuous medium

(figure 1.1). Many foods are part of this category, like sauces and milk, and

other commonly used materials like paints, cosmetics or lubricants. There

is also a strong theoretical interest in these materials since colloidal suspen-

sions are good models to study the thermodynamical properties of atomic

systems, protein folding and of other complex biological processes that are

fundamental for life. But on top of that, colloids are interesting just because

they are a real physical system that can used to test theoretical predictions

in Statistical Physics.

Different particle shapes can be provided, and different kinds of inter-

action among particles can be easily achieved through electric, magnetic or

entropic interactions. Commonly spheres, rods, micelles, core-shell particles

can be produced or bought at low costs. Theoretical models of hard-spheres

suspensions predict ideal-gas behaviour at low density, liquid-solid freezing or

more physically interesting states like gels and glasses where dynamic is ar-

rested. This explains why colloidal suspensions are commonly used as model

systems to study the dynamical arrest: phase changes can be easily triggered

changing parameters like concentration, temperature, pH of the solution, and

therefore predictions can be verified through experiments. Biological systems

can also be modelled by means of these suspensions, reproducing processes

like ageing or self assembly.

Particles suspended in a liquid may form aggregates, because of various

kind of attractive intermolecular forces. Particle modifications performed in

order to eliminate the attractive interactions that lead to aggregations are

called ”stabilizations”; this can be done in two different ways, shown in figure

1.2:

• charge stabilization - through the action of a polar solvent an exter-

nal, electrically-charged layer around the particles is produced, while
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Figure 1.1: Gold nanoparticles suspended in water; the radius of the particles

determines the colour of the suspension. From [2].

counter-ions floating in the liquid forming an outer layer of opposite

charge. Therefore when two such particles approach because coulom-

bian interaction causes repulsion;

• stabilization through entropic forces - when a layer of polymeric chains

surrounds particles leading to entropic repulsion, because the layers of

different particles can not interpenetrate each other.

In the first case, we have a long-range kind of interaction. Using the sec-

ond method, instead, we obtain a short-range interaction which reproduces

the infinite-wall potential: particles behave as hard spheres.

Silica in water or in glycerol is a well-known example of charge-stabilized

system, while PMMA coated with polymers and suspended in decalin, the

main sample investigated in this study, is a paradigm of a suspension stabi-

lized by entropic forces.

As concentration increases, attractive forces rise leading to the formation

of a gel: this usually happens when the volume fraction is greater then 50−
60%. This process can be called ”flocculation”, ”aggregation”, ”gelation”,

and it can occur if the sample is not kept with care, e.g. if the container is left

open during a measurement, the solvent evaporates destroying the temporal

invariance.
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Figure 1.2: Stabilization of colloidal particles. Left: charge stabilization;

Right: steric stabilization. From [3].

1.1 Microfluidics applied to X-rays studies

The terms ”microfluidics” refers to a group of experimental techniques

which involve the use of syringes and tubes (with a radius ranging from 1µm

up to 1mm) to have the sample flow during a measurement, sometimes mixing

the various sample’s components in the tube, right before the measurement.

There are several reasons, in soft-condensed matter studies, for having the

sample flowing in a tube instead of keeping it contained in a capillary or in

another container:

• avoid spurious effect given by cavitation and other unwanted modifica-

tions in the system’s properties induced by the strong x-ray beam, con-

tinuously providing new sample; just a syringe and a tube are needed.

• easily measure a time-dependent process like gelation, chemical reac-

tions, phase transitions with a simple experimental setup; using a sy-

ringe for every component and T connections, it is possible to mix the

sample at the beginning of the tube defining this instant as ”t0 = 0s”,

thus the distance between the mixing point and the beam position is

directly linked to time t1;
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Figure 1.3: Microfluidic device: droplets of sample flowing in an oil stream.

Courtesy of Andrei Fluerasu.

• measure sample properties in confined volumes, creating droplets (i.e

colloidal suspensions in water, figure 1.3) in a flowing medium (i.e oil);

in order to realize this setup at least two syringes are needed, one for

the oil and one for the sample, and also a tube-in-tube configuration

with tubes with different radius.

All these different kinds of result can be achieved using equipment like

tubes, syringes and connections, that are cheap and easy to purchase. How-

ever, an important point to be discussed is up to which extent the presence of

the flow modifies the intrinsic dynamics of the particles studied. The present

thesis work addresses this point. The answer obtained is quite simple: under

reasonable conditions, the presence of the flow does not influence the dynam-

ical properties observed, if exchanged momentum ~Q is taken perpendicular

to the direction of the flow. This clearly helps the practical realization of the

experiment.



Chapter 2

Theoretical framework

2.1 Static structural properties: SAXS

Small Angle X-ray Spectroscopy (SAXS), the measurement of scattered

intensity as a function of exchanged momentum ~Q, allows the characteriza-

tion of the structure of interacting colloid systems. Performing SAXS on a

low concentration solution of particles gives information about their shape

and their size: these quantities can also be measured in high concentration

samples, looking at a Q range not too close to zero, for example in theQR ≥ 7

region. In the very-low-Q range the effects of interaction among particles play

a huge role in giving the scattered intensity. The structure of an isotropic

system, a colloidal suspension in our case, depends on the size distribution

and concentration of the particles, and is usually described by the so-called

static structure function S( ~Q).This function can be theoretically determined

by choosing a model potential to describe the interaction among particles,

and by choosing a suitable distribution function for particle’s diameter: the

resulting expression can be used to fit experimental data.

2.1.1 Scattering theory

The theory of light scattering is based on the following assumptions: first,

the intensity of X-ray scattered by the density fluctuations within the medium
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can be neglected; second, we consider only single scattering in the first Born

approximation, a perturbative method which consist in considering, in each

point of the scatterer, only the incident electric field instead of the total elec-

tric field also made of the field scattered by other regions of the same object;

third, both the particles and the medium are orientationally symmetrical.

In this approximation, as reported in [9], the field’s amplitude of the X rays

scattered by one particle is proportional to

bi(Q) = 4pi

∫ ∞

0

r2[ρ(r) − ρm]
sinQr

Qr
dr (2.1)

where ρ and ρm are the electron densities of the particles and of the medium

respectively.

Considering an ensemble of N particles, the total instantaneous amplitude

of the scattered electric field at the detector is given by

E(Q, t) = K

N∑

i=1

bi(Q) exp[i ~Q · ~ri(t)] (2.2)

where ~ri(t) is the position of particle i at time t and K is a constant. Since

the intensity is proportional to the square modulus of the amplitude of the

electric field, the expression for its ensemble average is just

〈I(Q)〉 = K2
N∑

i=1

N∑

j=1

〈
bi(Q)bj(Q) exp[i ~Q · (~ri − ~rj)]

〉
(2.3)

Monodisperse particles

For monodisperse particles, bi(Q) = bj(Q): in this situation we can easily

rewrite last equation in a shorter form:

〈I(Q)〉 = NK2 (b(0))2 P (Q)S(Q). (2.4)

P(Q) is the single particle form factor, and it consists only in a conventional

and normalized rewrite of b(Q)2, while S(Q) is the so-called structure factor;
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they are given by the following expressions:

P (Q) =

[
b(Q)

b(0)

]2

S(Q) =
1

N

N∑

i=1

N∑

j=1

〈
exp[i ~Q · (~ri − ~rj)]

〉
.

In a dilute suspension of colloids, in which we have no correlation between

the positions of the particles, S(Q)=1: a SAXS scan provides the form factor

of the single particle. Therefore, we can measure I(Q) for a concentrated

suspension, and dividing it by the dilute data we obtain a measure of the

structure factor S(Q) for this sample. An analytical expression for P(Q) can

be obtained resolving the integral in equation (2.1): this calculation gives,

as reported in [10],

Pmono(Q,R) =
9

(QR)6
(sinQR −QR cosQR)2 . (2.5)

This function is characterized by an oscillating profile with minimums in fixed

positions: QR = 4.493, 7.725 . . . . The eventual presence of polydispersity

results in a smoother curve, and in different positions for these minimums.

Let’s consider the scattering cross section for X-rays: it is given by

∂σ

∂Ω
=

I(Q)

Ii/A ǫ T ∆Ω
(2.6)

where I(Q) is the scattered intensity, Ii is the incident intensity, A is the beam

size, ǫ the detector’s efficiency and T the transmission coefficient, namely the

ratio between the transmitted and the incident intensities. The transmission

coefficient can be obtained through a measurement of the monitor counting,

that can be related to the flux of incident photons by a simple calculation

which involves some experimental parameters concerning the monitor detec-

tor itself. ∆Ω is the solid angle seen by a single pixel, which is given by

∆Ω =
d2pix

L2 : here dpix is the pixel size, L the sample-detector distance.

The form factor P(Q) is related to the differential cross section by the

following relation
∂σ

∂Ω
= r2

eNP (Q)S(Q). (2.7)
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which is a mere manipulation of equation (2.4), and is reported in [11]. In

this equation, r2
e is the classical electron radius and N the number of particles,

which is related to the volume fraction Φ of the sample: Φ = NVpart

Vsample
. In this

case, Vpart is the volume of a single silica sphere, while Vsample is the scattering

volume, namely the product between the beam size A and the mean width l

of the water droplet.

Using equations (2.6) and (2.7), deriving an expression for the volume

fraction of the sample is possible:

Φ =

(
I(Q)

P (Q)

)
Vpart

r2
e Ii l ǫ T ∆Ω

(2.8)

The scale parameter I(Q)
P (Q)

can be obtained through fitting: by means of this

simple calculation, we can easily measure the concentration of a sample.

Polydisperse particles

Now we can complicate a little bit the situation, considering a distribu-

tion of sizes that makes bi(Q) vary from particle to particle as a consequence

of different sizes and shapes of the particles. An analytical solution of equa-

tion (2.3) can be found only in few cases: one of whom will be shown in

the following paragraph. Instead an approximated, but applicable to many

situations, approach is possible.

As in [12], we made the assumption that particle size and orientation

are uncorrelated with the position of the particles. Then we can rewrite

equation (2.3) by averaging the term bi(Q)bj(Q) with a weight given by the

distribution of particle sizes and orientation:

〈I(Q)〉 =

N∑

i=1

N∑

j=1

〈bi(Q)bj(Q)〉
〈
exp[i ~Q · (~ri − ~rj)]

〉
(2.9)

〈bi(Q)bj(Q)〉 =

{
b2(Q) if i = j

b(Q)
2

if i 6= j
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We can write a more understandable form of this equation, that uses some

notation we reported for monodisperse particles.

〈I(Q)〉 = N (b(0))2 P (Q) {1 + β(Q) [S(Q) − 1]} . (2.10)

β(Q) =
b(Q)

2

b2(Q)
P (Q) =

b2(Q)

[b(0)]2

S(Q) = 1
N

N∑

i=1

N∑

j=1

〈
exp[i ~Q · (~ri − ~rj)]

〉
.

2.1.2 Polydisperse hard spheres

Most of the samples studied in this work are well described by an hard

spheres model, in which their polydispersity is taken into account. The

interactions among particles, important if volume fraction is higher than

5 − 6%, are of the “excluded volume” kind, and they lead to a structure

factor different from 1. Analytical expression for the structure factor can be

obtained by applying the Percus-Yevich approximation to the Hamiltonian

of this system.

In order to obtain an analytical expression of the form factor for spherical

particles, it is useful to switch to integrals instead of summations in the

calculation of P (Q), the polydisperse form factor, and of β(Q), a factor

between zero and one that suppress the oscillations of the structure factor

in the observed scattering intensity. Both involves the scattered amplitude

bi(Q), as they contains the square power of its average and the average of its

square power.

b(Q)
2

=

∣∣∣∣
∫ ∞

0

√
Pmono(Q,R) f(R) dR

∣∣∣∣
2

(2.11)

b2(Q) =

∫ ∞

0

Pmono(Q,R) f(R) dR (2.12)

Here f(R) is the particle size distribution centered at R = R, where R

is the mean radius. Usually the gamma (Schulz) distribution is chosen, for

its mathematical tractability. This distribution tends to the Gaussian one as
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its width parameter, Z, tends to infinity; the polydispersity of the sample is

given by
√

1
Z+1

(Z is always major than −1) while the standard deviation of

the radius of the particles is given by σ = R√
Z+1

.

f(R) =

(
Z + 1

R

)Z+1

RZ exp

[
−
(
Z + 1

R

)
R

]
/Γ(Z + 1) (2.13)

An analytical solution of integrals (2.11) and (2.12) for gamma-distributed

sizes is reported in [12]. Thus, now we have an analytical expression for both

P (Q) and β(Q): an example is shown in figure 2.1.

 0  5  10  15  20

10+14

10+16

10+18

10+20

QR

P
(Q

)

Polydisperse Spheres: form factor

Polydispersity = 1%
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Figure 2.1: Form factors of hard spheres, with different polydispersity

An analytical expression for the structure factor is derived in [4] for

spheres with excluded-volume interactions and Schulz distributed size: an

example of what we obtain is reported in figure 2.2, which is an exact repro-

duction of a figure in the article cited before. The S(Q) expression is quite

lenghty but simple to understand: the mean in equation (2.1.1) is performed

as an integral from 0 to ∞, that can be easily solved due to the properties

of the Shulz-Gamma distribution:

S(Q) = 1.− 2ph

x3(X2 + Y 2)
(2.14)
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h = λ[λ(Y δ1 −Xδ6) + λ′(Y δ2 −Xδ4) + µ(Xδ1 + Y δ6) + µ′(Xδ2 + Y δ4)]

+λ′[λ(Y δ2 −Xδ4) + λ′(Y δ3 −Xδ5) + µ(Xδ2 + Y δ4) + µ′(Xδ3 + Y δ5)]

+µ[λ(Xδ1 + Y δ6) + λ′(Xδ2 + Y δ4) + µ(Xδ6 − Y δ1) + µ′(Xδ4 − Y δ2)]

+µ′[λ(Xδ2 + Y δ4) + λ′(Xδ3 + Y δ5) + µ(Xδ4 − Y δ2) + µ′(Xδ5 − Y δ3)]

X=1−(2π/∆)(1+ 1

2∆
πη3/)(ρQ−3)(Qζ1−ψ0)

−(2π/∆)(ρQ−2)[(χ1−ζ1)+ 1

4∆
πη2/(χ2−ζ2)]

−(π/∆)2(ρQ−2)2[(χ0−1)(χ2−ζ2)−(χ1−ζ1)2−(Qζ1−ψ0)(Qζ3−ψ2)+(Qζ2−ψ1)2]

Y=(2π/∆)(1+ 1

2∆
πη3/)(ρQ−3)(χ0+ 1

2
Q2ζ2−1)

−(2π/∆)(ρQ−2)[(Qζ2−ψ1)+ 1

4∆
πη2/(Qζ3−ψ2)]

−(π/∆)2(ρQ−2)2[(Qζ1−ψ0)(χ2−ζ2)−2(Qζ2−ψ1)(χ1−ζ1)+(Qζ3−ψ2)(χ0−1)]

(2.15)
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b = 2R/(Z + 1) c = (Z + 1)

R3 = (Z + 2.)(Z + 3)R3/(Z + 1)2 ρ = Φ/(4
3
πR3)

η1 = ρbc η2 = ρb2c(c+ 1) η3 = ρ(b3c(c+ 1)(c+ 2))

∆ = 1 − πη3/6 ν1 = 1/(1 + (bQ)2) ν2 = 1/(4 + (bQ)2)

ζ1 = bc ζ2 = b2c(c+ 1) ζ3 = b3c(c+ 1)(c+ 2)

ψ0 = ν
c/2
1 sin[c tan−1(bQ)]

ψ1 = bcν
(c+1)/2
1 sin[(c+ 1) tan−1(bQ)]

ψ2 = b2c(c+ 1)ν
(c+2)/2
1 sin[(c+ 2)atan(bQ)]

µ = 2cν
c/2
2 sin[c tan−1(bQ/2)]

µ′ = 2c+1bcν
(c+1)/2
2 sin[(c+ 1) tan−1(bQ/2)]

χ0 = ν
c/2
1 cos[c tan−1(bQ)]

χ1 = bcν
(c+1)/2
1 cos[(c + 1) tan−1(bQ)]

χ2 = b2c(c+ 1)ν
(c+2)/2
1 cos[(c+ 2) tan−1(bQ)]

λ = 2cν
c/2
2 cos[c tan−1(bQ/2)]

λ′ = 2c+1bcν
(c+1)/2
2 cos[(c+ 1) tan−1(bQ/2)]

δ1 = (π/∆)(2 + (π/∆)(η3 − (ρ/Q)(Qζ3 − ψ2)))

δ2 = (π/∆)2(ρ/Q)(Qζ2 − ψ1)

δ3 = −(π/∆)2(ρ/Q)(Qζ1 − ψ0)

δ4 = (π/∆)(Q− (π/∆)(ρ/Q)(χ1 − ζ1))

δ5 = (π/∆)2((ρ/Q)(χ0 − 1) + 1
2
Qη2)

δ6 = (π/∆)2(ρ/Q)(χ2 − ζ2)

(2.16)
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Using these equations we can now fit experimental data and obtain a

measure of the mean radius of the particles, of their polydispersity and of

their concentration.
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Figure 2.2: a)Structure factors of hard spheres, with fixed polydispersity, at

different concentrations; b)Structure factors of hard spheres, with concentra-

tion fixed at 40%, at different values of polydispersity.

Another model for the intensity as a function of Q is reported in [4]. It is

an analytical solution of equation (2.3) for a Schulz-polydisperse hard spheres

fluid, in the Percus-Yevich approximation. The differences between this last

formula and P (Q) · S(Q) is shown in figure 2.3.

Core-shell model: comparison

In order to achieve better results, another model for the form factor was

considered: the core-shell particle model. Since our sample consists of stearic

stabilized particles, taking into account the contribution to the scattering of

the polymeric layer around the particle may lead to better results in fitting

the experimental results. An analytical solution was obtained in [13]; this

expression has more parameters than the hard-sphere model: the particle’s
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Figure 2.3: Comparison between the analytical solution of equation (2.3) and

the approximation P (Q) · S(Q)

radius, the shell thickness, the electron densities of the core, the shell and

the medium, the size’s polydispersity and the concentration. Of course, this

model must lead to the same results of the hard sphere one in case the shell

as null thickness, or it is made of the same material of the core: this is shown

in figure 2.4

The increasing number of particles allows, obviously, to describe a greater

number of samples: in our case, with a shell thickness of the order of 1% of

the total radius, we see no improvements at all respect to the hard sphere

model. Therefore, the ”core-shell particles” model was not used during data

analysis.

2.2 Dynamics: XPCS

In this chapter, having illustrated what can be measured through a SAXS

experiment, we want to show how the dynamics of our sample can be studied

by XPCS, X-ray Photon Correlation Spectroscopy. Photon Correlation Spec-

troscopy is a technique that usually involves visible light; although, there are
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Figure 2.4: Comparing the hard sphere and the core-shell particle models:

the red curve is the result for the hard-sphere model, the blue one is given by

the core-shell model with shell not present, the red one represents a core-shell

model with a shell made of the same material of the core.

several advantages in using X-rays instead:

• it is possible to study matter on the inter-atomic length scale, since it

is possible to reach high values of the exchanged momentum Q;

• it is possible to study optically opaque samples, since multiple scatter-

ing, one of the main difficulties in light scattering, is negligible.

These results can be achieved as well using Neutron Scattering, but by

means of X-rays only a relatively small quantity of sample is required, while

the high flux of photons, compared to the much lower neutron flux, allow

fast data detections. On the other hand, several advantages connected to

the use of neutrons are lost, like the ones introduced by deuteration or other

techniques very useful in soft-matter studies.
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2.2.1 Coherent X-rays

Visible light coherence is obviously obtained using a laser source. It is

possible also to use an incoherent source like an X-ray undulator, with an

high collimated and monochromatic beam, to obtain coherent light: in this

case the intensity of coherent light is directly proportional to the brilliance

of the source. Since third generation synchrotrons produce coherent X-rays

several order of magnitudes more intense than in the past, this kind of studies

are now possible: with the enormously higher amount of photons there are

no problems in losing many of them by collimation in order to obtain a

high-coherence beam. Coherence is the correlation between the phase of a

light wave at different points or instants, separated by a certain distance or

a certain delay. Transverse (d) and longitudinal (lcoh) coherence length can

be defined as the distances at which the wave still holds a specified degree

of coherence: they are related to the wavelength and other experimental

parameters by means of simple expressions:

lcoh = λ2

2δλ

lt = λRs

2ds

where λ is the wavelength, δλ the standard deviation of its distribution, Rs

the distance from the source and ds is the source size. Using a pinhole of size

comparable to the coherence length result in a coherent beam. At ID10A,

a flux major than 109 ph
sec·100mA of monochromatic x-rays (∆E

E
= 1.4 · 10−4) is

obtained using a 10x10 µm2 pinhole.

A demonstration that synchrotron radiation is characterized by sufficient

coherence, despite being generated by an incoherent source, is the measure-

ment of Fraunhofer diffraction pattern of a pinhole, as reported in figure

2.5.
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Figure 2.5: Fraunhofer diffraction from a, 2.5µm and b, 5µm diameter pin-

holes [14]

2.2.2 Speckles and correlation functions

Coherent radiation scattered from a disordered sample results in a random

diffraction or ”speckle” pattern, which is due to interference of many waves

with different phases. The use of incoherent light would lead to an averaged

pattern, whit consequent loss of information. Since it is due to the disorder,

it is possible to access the dynamics of the sample study of speckle’s changes

with time .

Although speckles obtained with visible light are well known, X-rays

speckle patterns have been observed for the first time in 1991 [14], measur-

ing the diffuse (001 crystallographic direction) peak from an ordered single

crystal of Cu3Au. Such a crystal was made of a random arrangement of

domains given by the four different ways in which the single unit can occupy

a lattice’s site.

It is not a immediate task to perform an XPCS experiment; indeed, there

are some general conditions necessary to be satisfied, provided by [15]:
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• the scattering volume size must be comparable with the coherence vol-

ume one, given by the product of the coherence lenghts;

• the scattering should be broad enough, thus the sample should be

enough disordered on the spatial scale of the scattering volume;

• a sufficiently high number of counts per correlation time must be pro-

vided;

• a good statistic is needed, provided by a sufficient number of correlation

times - a good number of points into the correlation function - thus by

an adequate number of speckles.

Figure 2.6: Speckle pattern. On the left-upper side of the 2d image, a radial

average of the pattern was performed. Courtesy of Andrei Fluerasu

The speckle pattern reflects the disorder of the sample contained in the

scattering volume. The study of the speckle pattern’s changes provide in-

formation regarding the motion of the particles. This leads to a well known

visible-light technique, called either Intensity Fluctuation Spectroscopy (IFS),

Dynamic Light Scattering (DLS) or Photon Correlation Spectroscopy (PCS).

A first variable quantity we can look at is the first-order correlation function,
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related both to the electric field of the light we are measuring and to the

first-order coherence of light:

g(1)(τ) =
〈E∗(t)E(t+ τ)〉
〈E∗(t)E(t)〉 (2.17)

We can also deal with the so-called second-order coherence of light through

the normalized correlation function of intensity, thus directly related to what

we really measure during a scattering experiment:

g(2)(τ) =
〈I∗(t)I(t+ τ)〉

〈I(t)〉2
(2.18)

It is possible to demonstrate that using Gaussian distributed light those

quantities are connected by a very simple relation:

g(2)(τ) = 1 +
∣∣g(1)(τ)

∣∣2 (2.19)

Since g(1)(τ) is equal to the normalized intermediate scattering function, we

can provide a simple model for g(2)(τ); we have that

g(1)(τ) =
F ( ~Q, t)

F ( ~Q, 0)
(2.20)

Here F ( ~Q, 0) can be identified with the static structure factor while F ( ~Q, t),

the intermediate scattering function or dynamic structure factor, is given by

F ( ~Q, t) =
1

Nf 2( ~Q)

∑

n

∑

m

〈
fn( ~Q)fm( ~Q)ei

~Q[~rn(0)−~rm(t)]
〉

(2.21)

where the brackets indicate an ensemble average over the scattering ampli-

tudes fn( ~Q).

A simple example is given by a low-concentration colloidal suspension of

monodisperse spherical particles under Brownian motion. In this situation

the mean square value for particle displacement is 6D0t, proportional to the

diffusion coefficient

D0 =
kBT

6πηR
(2.22)

The intermediate scattering function is just the Fourier transform of the

space-time correlation function G which gives the probability that, having a
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particle in a certain position at time t, there is another particle at distance

~r; for Brownian motion, this function is a Gaussian curve:

G(~r, t) = (4πD0t)
− 3

2 exp

[
− r2

4D0t

]
. (2.23)

The Fourier transform of a Gaussian curve is another Gaussian curve in the

reciprocal space:

F ( ~Q, t) = exp
[
−DQ2t

]
. (2.24)

The second-order correlation function is then equal to

g(2)(τ) = 1 +

∣∣∣∣∣
F ( ~Q, t)

F ( ~Q, 0)

∣∣∣∣∣

2

= 1 + e−2D0Q2t. (2.25)

This expression is not valid anymore when inter-particle interaction are

present. Keeping the exponential form of the correlation function is still pos-

sible, simply introducing a wavevector-dependent diffusion coefficient D(Q).

The effects of interactions are therefore included in the time constant only,

which is not constant over Q anymore. Moreover, this technique is valuable

while studying very interesting out-of-equilibrium samples in which dynamic

properties change in time, the sample undergoing a process of aging were the

temporal invariance is broken. Correlation functions are now characterized

by a diffusion time which is a function of time, as well as of Q. Informations

about these processes can be retrieved from the speckle pattern through the

so-called two-times correlation function, as first proposed in [16]:

Corr(Q, τ1, τ2) =
〈I(Q, τ1)I(Q, τ2)〉
〈I(Q, τ1)〉 〈I(Q, τ2)〉

. (2.26)

The function has its maximum on the diagonal: going away from it, the

function decays to one. If contour lines are parallel to the diagonal, then the

sample does not ages.



Chapter 3

Experimental details

3.1 SAXS and XPCS at ID10A, ESRF

ID10A is a multipurpose, high-brilliance undulator beamline at ESRF,

the European Synchrotron Radiation Facility. Composed by two different

experimental hutch, it provides either XPCS, high resolution X-ray scatter-

ing (XD), coherent SAXS or biological Coherent Diffraction Imaging (CDI);

it is dedicated to the study of structural and dynamic properties of soft and

hard condensed matter. This thesis work has been carried out there, measur-

ing both static properties and correlation functions. Technical informations

about ID10A are reported in its website [17].

The X-ray source consists of three undulator: one 27 mm undulator

(U27), one 35 mm undulator (U35), and a revolver unit carrying both U27

and U35 undulators. Therefore, undulators total scheme can be changed

depending on energy requirements. The source size, in other words the Full

Width at Half Maximum (FWHM) of the profile of the beam, is equal to

928µm in the horizontal direction and to 23µm in the vertical one. Typi-

cal divergences at 10 keV, still intended in terms of FWHM, are 28µm in

horizontal direction and 17µm in vertical, implying a maximum beam size

of respectively 2 mm and 0.8 mm at the TROIKA I monochromator posi-

tion, located 44.2 m away from source. The monochromaticity of the beam

50
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is assured by a multi-crystal single bounce monochromator that consists of

three different monochromator crystals: diamond(111), diamond(220), and

silicon(111). Beryllium compound refractive lenses (CRL) or a double mirror

system can be used to focus the beam, which is reduced by a system of slits

to a size of 10x10µm2 at sample position.

3.1.1 Detectors

ID10A’s experimental hutch is equipped with both point detectors and

2D detectors, operating at different frequencies. Normally a 2D detector is

preferred, since it allows measurements of correlation functions at different
−→
Q

during the same measurement. The main limitation of this kind of detectors

is the low frame-rate, which does not allow fast dynamics measurements;

this problem is partially solved by the new MEDIPIX-II detector. Anyway,

the dynamics of some samples can be studied only by means of a fast point

detector.

Figure 3.1: BICRON scintillator counter, ID10A, ESRF.

Point detector

ID10A’s point detector is a BICRON scintillator counter, model 1XM.040B

- PMT type R580, with beryllium entrance window. Its circular crystal has
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a radius of 2.54cm and a 1mm thickness, while its energy range from 3 up

to 100 keV; its count rate ranges up to 30000cts/sec. The point detector is

commonly used during the alignment procedures as well, and also in addition

to a 2D detector to measure the intensity of the transmitted beam through

the sample under study, so that the total attenuation can be deduced.

2D detectors

There are two two-dimensional detectors available at ID10A, with differ-

ent frame-rates and detection areas. Each has to be equipped with a beam-

stop to avoid detection of the direct beam, which will obviously cause damage

to the sensitive area. The first 2D detector is an high resolution water-cooled

CCD camera, from Princeton Instruments, consisting of 1152x1242, 22.5µm

pixel. The very long reading time (≃ 1s) between two different frames is

the main problem of this detector. This time can be reduced selecting a

smaller active area, but still detecting fast dynamics is impossible. Subtract-

ing a measurement done with no beam is mandatory in order to obtain useful

data: the degradation of the chip under direct illumination by hard X-rays

is inevitable, even when it is used to detect weak signals in photon-counting

mode (less than 100 ph
pix·s), leading to the presence of dead pixels and ”ghost”

images.

The second detector is a 2D array of CMOS pixel cells working in single-

photon-counting. A threshold can be tuned to measure every single photon

hitting the active area, thus avoiding the need of ”dark” measurement. Since

the reading time is almost equal to 60µs, we can acquire up to 1000 images per

second, with 16000 images as maximum. Therefore, the study of dynamics

characterized by a time-scale of the order of the hundredth of a second is made

possible using this detector. Waiting time option and a synchronized shutter

are also disposable, to allow long measurements avoiding beam damage.
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Figure 3.2: Medipix 2 detector: the area behind the aluminum strip can

contains up to 5 sensors.

3.1.2 Multi-tau correlator

The calculation of the intensity-intensity correlation functions is carried

out by a software program, when we are using a 2D detector, or by an elec-

tronic device, if we are using a point detector; both are called ”correlators”.

It is meaningless trying to calculate a correlation function by a ”brute force”

approach, using the mathematical definition of g2(τ) given by equation (2.18):

it will require an enormous amount of time and of computational resources

to perform an average, given a correlation time τ , over every couple of val-

ues of the intensity separated by that time. A different approach is needed:

the multi-tau correlator, which can be implemented both as a software and

as an electronic device. A multi-tau correlator is a combination of many

”usual” correlators, each of them working, at the same time, only using one

correlation time τ [18] [19]. Each correlator works using a correlation time τ

which is doubled respect to the time used by the previous correlator. This

way, the correlation function can be computed during data acquisition: since
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the calculation starts from small correlation times, we have many couples of

intensity values to average even is the measurement has just begun.

Figure 3.3: Hardware Correlator Flex01-08D, with two input connections

and an USB output.

The point detector is equipped with a multi-tau hardware correlator,

Flex01-08D from correlator.com, equipped with 1088 real time channels and

with a minimum correlation time of 8ns. Correlation functions from 2D

detector’s data are calculated using software multi-tau correlators, available

in many languages like Matlab, Python, Yorick.

3.2 Statistical analysis in PCS

In order to study the dynamical properties of a sample by XPCS, we

must find a way to estimate the statistical error of correlation functions

calculated through a multi-tau algorithm. An expression for the variance of

the correlation function must be found, keeping in mind that the standard

deviation is the square root of the variance.



3.2 Statistical analysis in PCS 55

We are not dealing with a simple calculation, since it involves the vari-

ance of summations and products of correlated random variables, namely the

intensities measured at each frame; ordinary statistics books usually report

expressions for uncorrelated random variables.

3.2.1 Low count rate limit

In this section the theory developed in [20] is reported, just with some

changes in the notation.

We can start evaluating the error of the unnormalized correlation function

Ĝ(2)(τ) =
1

M

M∑

i=1

n(ti + τ)n(ti)

of the intensities detected during an experimental time T: it can be expressed

as

var
(
Ĝ(2)(τ)

)
=
var(n(τ)n(0))

M
+

2

M

M−1∑

k=1

(
1 − k

M

)
×

×
[
〈n(kτa + τ)n(kτa)n(τ)n(0)〉 −

(
Ĝ(2)(τ)

)]
. (3.1)

Here, n(t) is the measured intensity, or count rate, recorded at time t during

the accumulation time τa, while M is the number of averaged correlated pairs.

For the moment, it is better to start from a simpler situation, when the

averaged number of counts per frame is low:

n << 1

This condition is easily satisfied using a Fast Point Detector characterized by

a very short acquisition time. The use of a CCD may cause some problems

if the exposure time is too long, a feature needed in order to measure slow

dynamics; this will lead to significantly high count rate, specially at low Q.

Anyway, using this approximation we can consider, in equation (3.1), only

the terms of the lower order in n. It can be shown that these terms rise only

from the first addendum:

var (n(τ)n(0)) = 〈n(τ)n(0)〉 +O(n3) ≃ G(2)(τ)
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Then, the approximated expression for the variance of the unnormalized

correlation function is

var
(
G(2)(τ)

)
≃ G(2)(τ)

M
. (3.2)

This is only a first step: the quantity measured during an experiment is

the normalized correlation function;

ĝ(2)(τ) =
G(2)(τ)

n2 =

M−1

M∑

i=1

n(ti + τ)n(ti)

[

M−1

M∑

i=1

n(ti)

]2 . (3.3)

Strictly speaking, the last equation returns only a biased estimator of the nor-

malized correlation function; the deviation experienced from the ideal value

is of the order of the square of the variance of ĝ(2)(τ), therefore complicating

the notation is useless. From now, we are not going to make distinctions

between this expression and the real correlation function.

Knowing the variance of the unnormalized correlation function, deriving

the expression of the variance of the normalized one, although as an approxi-

mation, does not require much efforts. If we expand (3.3) to the second order

in terms of the deviations from the mean values of n and G(2), we obtain the

following expression, which is true if M is sufficiently large:

var
(
g(2)
)

=
var

(
G(2)

)

n4 + 4
g(2)

n2 var(n) − 4g(2)

n3

[〈
nG(2)

〉
− n3g(2)

]
(3.4)

Since we are in the limit n << 1, every term except for the first can be

neglected, and therefore we can apply equation (3.2) to obtain a simple and

very useful expression:

var
(
g(2)(τ)

)
=

ĝ(2)(τ)

M(τ)n2 (3.5)

where M is the number of correlated pair averaged in the calculation of

g(2)(τ), therefore it is a function of τ , while n is the mean intensity per

frame. In applications, we have to be very careful: the true meaning of

expression like ”accumulation time” or ”per frame”, that we have used so

far, must be sorted out.
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CCD detector

Now we can apply the results obtained to the real case of a CCD detector,

expressing M(τ) in a more understandable form; a similar calculation is

reported in [21]. Let’s consider the calculation of a correlation function over

N frames, each of them with an exposure - or accumulation - time τa, collected

during a total experiment time T. The number of correlated pair at the

minimum delay time τ = τa is simply N − 1: in other words, we have

M =
T − τ

τa

We could take into account a read-out time τr and an optional ”sleep”

time τs, with a total time between consecutive frames τf = τa + τr + τs.

Moreover, using a CCD means that we are averaging over Npix times more

correlated pairs, where Npix is the number of pixels. This lead to the more

general expression

M = Npix
T − τ

τf
.

Finally, equation (3.5) for the variance of the correlation function can be

rewritten as

var
(
g(2)(τ)

)
=

τf g
(2)(τ)

Npix (T − τ) n2 . (3.6)

It is worth noting that uncertainty grows as τ approaches the total measure-

ment time T: when the difference (T −τ) goes to zero, the error bar diverges.

This make sense, because at high delay times we are averaging on less and

less correlated pairs.

Point detector

Equation (3.6) can be easily adapted to the case of a single-point fast

detector coupled with an hardware multi-tau correlator. Such correlator

doubles the accumulation time and the delay time every L channels. We can

express the accumulation time corresponding to every point of the correlation

function as the difference between the delay times of the considered point and

of the one next to it. Moreover, we can neglect the read-out time, while the
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”sleep” time is not present. Photon counts per second, I, are the output of the

hardware correlator. This quantity is related with n by the relation n = Iτa.

Bearing this in mind, the expression of the variance of the correlation function

is simply

var
(
g(2)(τ)

)
=

g(2)(τ)

(T − τ) I
2
τa
. (3.7)

Signal-to-noise ratio

A useful parameter of the goodness of a measure is the so-called Signal-

to-noise ratio, or SNR. For a correlation function, it is usually defined as

SNR =
g(2)(τ) − 1√
var (g(2)(τ))

(3.8)

Sometimes a rough estimator of SNR is desirable; in particular, we can

make a low contrast approximation for an ideal single point detector. In such

a limit we have 



g(2)(τ) ≃ 1 + β
√
g(2)(τ) ≃ 1

thus we obtain

SNR = β I
√

(T − τ)τa (3.9)

an expression reported in [22] as well.

3.3 Sample preparation

The main subjects of this research were colloids made of poly(methilmethacrylate)

- or PMMA - spheres coated by a thin external layer of poly-12-hydroxystearic

acid, suspended in decalin (figure 3.5).

Decalin, or decahydronaphthalene, is an organic industrial solvent. Col-

orless and with a strong aromatic odor, it is less dense than water having

ρ = 0.896. It presents two different forms, cis and trans (figure (3.4)): in

this work we used a mix of the two because of its lower cost, since a large

quantity of sample goes wasted during a flow experiment.
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Figure 3.4: Decalin: trans (left) and cis (right) forms.

PMMA colloidal systems were studied for the first time by Pusey and

Van Megen [23], showing their hard-sphere behaviour. The total radius of

the particles was around 90nm, with 1nm given by the polymeric layer which

provides hard-sphere behaviour to the sample through steric stabilization.

Particles are electrically neutral, therefore they interact only through entropic

forces.

The stock sample had a volume fraction Φ = 0.327. Preparation of diluted

samples was initially performed diluting the stock suspension with decalin

obtained from centrifugation of the sample itself; decalin is a mix of its trans

and cis forms, and a priori the effects of using another mixture of decalin,

with different percentages of cis and trans isomers, are unknown. This led

to various problems, mainly due to the altered distribution of radius respect

to the one of the original sample: the decalin obtained from centrifugation

can contain small or broken particles. Therefore, dilution with new decalin
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Figure 3.5: PMMA spheres coated with poly-12-hydroxystearic acid: en-

tropic forces avoid aggregation.

was performed. Preparation of more concentrated sample was carried out

by centrifugation and subsequent elimination of the resulting top layer of

decalin.

Sample up to Φ ≃ 0.45 were liquid or gel-like, therefore they can be flown

through microfluidics devices. Higher concentration samples reached a solid

vitrified phase, clearly unusable in our experiments. A phase diagram as a

function of sample concentration is reported in figure 3.6, taken from [3].

As we can see, when concentration goes over a certain value an hard-

spheres suspension becomes either gel or solid; therefore we can observe a

disorder-order transition from random to crystalline phases, driven by en-

tropy. Let’s consider the concentration labelled with ”RCP”; it indicates the

most dense random arrangement of particles, namely the ”Random Close

Packing”, which occurs at Φ ≃ 0.64: in this situation particles are not free

to move, the dynamic is completely arrested, therefore they have any free

volume entropy left.

We expect the system to reach the state with the highest entropy, and

this state can be the crystalline one, which indeed has lower configurational

entropy, but higher free volume entropy: the total entropy of the crystalline

phase can be higher then the one of glassy state (figure 3.7).

The viscosity of the sample was also measured, leading to a value of
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Figure 3.6: Phase diagram of PMMA sterically stabilized hard spheres, as a

function of volume fraction [3]. The system can reach crystalline or glassy

states.

2.6cP at 298K: water at the same temperature has a viscosity of 0.89cP .

This measurement was carried out using a U-tube viscometer, calibrated with

water.

3.3.1 Brownian dynamics: measuring D0 with DLS

In order to make a complete analysis of the dynamics of the sample

through an XPCS experiment, the Einstein-Stokes diffusion coefficient D0

is needed. To measure it, we could try to perform XPCS on a very diluted

sample: the signal provided is, unfortunately, too low to measure correlation

functions with a sufficiently high Signal-to-Noise ratio. On the other hand,

recalling that in concentrated samples D(Q) tends to D0 as Q increases,

we could try to measure it with XPCS at higher values for QR: this is not
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Figure 3.7: Entropy of hard spheres: the system on the right has higher

total entropy, despite being more ordered, because it has higher free-volume

entropy [3].

possible with the current experimental setup at ID10A. We must find an-

other way: a standard technique as Dynamic Light Scattering, which is the

same technique as XPCS but performed using visible light, provides enough

photons to measure D0 on a very diluted sample.

samplek

k’

wavelenght = 532nm

Figure 3.8: Dynamic Light Scattering: experimental geometry.

In a sample with concentration around 1%, colloidal particles move in a

Brownian way: thus, correlation functions are given by equation (2.25). A

simple exponential fitting leads to the desired measurement. The measure

was repeated at different scattering angles, therefore D0 was expressed as a

function of the exchanged momentum Q, which is given by:

Q =
4πn

λ
sin

θ

2

where n = 1.48 is an estimation of the reflectivity index of a mix of cis-trans

decalin, and θ is the scattering angle.
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Figure 3.9: Dynamic Light Scattering: experimental setup.

As light sources we used two lasers, a red one and a green one, with wave-

length respectively equals to 532nm and 633nm. After hitting the sample,

kept in a cuvette placed in the center of a goniometer, scattered light was

detected by a phototube fixed to the goniometer itself, at around 30cm from

the center. Then, the signal was sent to an hardware multi-tau correlator,

and then to a PC (figure 3.9).

D0 as a function of the exchanged momentum Q is reported in figure 3.10.

As a control test, we measured D0 for a sample made of ASM361 hard

spheres in cis-decalin: results are reported in figure 3.11.

η D0

decalin 2.6cP 0.899µm2/s

cis-decalin 3.2cP 0.735µm2/s

The difference in viscosity between our mixed decalin and cis-decalin

causes the difference in the measured diffusion coefficients reported in fig-

ures 3.10 and 3.11. Therefore, we have a crossed control over our viscosity

measure. We can now cross-check viscosity and DLS measurements: from

D0 measurements, and given for cis-decalin a viscosity of 3.2cP , we have

an expected value for the viscosity of our mixed decalin of 2.6cP , in perfect

agreement with the value we measured using a viscometer. Measurements

were performed at room temperature, 24oC.
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D0 = 0.899 µm2/s
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Figure 3.10: ASM361 hard spheres in decalin, very diluted sample: Einstein-

Stokes coefficient measured with DLS

3.4 Flow devices for SAXS and XPCS

Flow devices characterized by a radius in the millimetre range can be eas-

ily build using cheap materials like kapton tubes, a very common material.

Using T connections and tubes of different radius, it is possible to mix reac-

tants directly in the flow device: the reaction begins in a precise position in

the tube, mapping its time evolution in space and then opening up the way

to time-resolved studies. One of the main advantages of millifluidics devices

is that shear flow is automatically achieved because of the reduced diameter:

no turbulence is present at reasonable flow rates.

While, as we will see, static properties of the suspension are not influ-

enced by the presence of the flow because of the spherical symmetry of the

particles, investigation of sample dynamics under flow requires some mathe-

matical discussions; the contribute to the correlation functions given by the

component of motion introduced by the experimental setup must be sepa-
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D0 = 0.735 µm2/s
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Figure 3.11: ASM361 hard spheres in cis-decalin, very diluted sample:

Einstein-Stokes coefficient measured with DLS

rated from the one which rises from particle intrinsic motion. This deriva-

tion is carried out in [24] under the hypothesis of uniform shear rate, in

other words a parabolic profile of the velocities in the tube. The correlation

function can be factorized into three different components, corresponding to

different, statistically-independent physical origins: thermal diffusion of

the colloids, transit time through the scattering volume, and shear;

|g1 (~q, t)|2 = |g1,D (~q, t)|2 + |g1,T (~q, t)|2 + |g1,S (~q, t)|2 . (3.10)

Considering that the experimental setup is characterized by a preferred

direction, the one defined by the flow, it is useful to separate the exchanged

momentum into two components, parallel and perpendicular to flow: ~q|| and

~q⊥.

When flow is not present, particle’s thermal diffusion is Brownian, there-

fore the corresponding correlation function is a simple exponential:

|g1,D (~q, t)|2 = exp [−2Dq2t]. (3.11)
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γ̇

q||

q⊥

Figure 3.12: Scattering geometry during a flow experiment: correlation func-

tions change along difffernt directions as parallel or perpendicular to the flow.

The presence of shear flow erases the isotropy of this function, introducing a

q-direction dependence:

|g1,D (~q, t)|2 = exp

[
−2Dq2t

(
1 − q||q⊥

q2
γ̇ +

q2
||

3q2
(γ̇t)2

)]
. (3.12)

Transit time effect consists in a modification of the correlation due to the

fact that, because of the flow, new particles enters the scattering volume

while other particles are going out with a frequency νtr = v/h, where v is the

mean velocity of the sample in the tube and h is the perpendicular size of

the scattering volume. The contribution of this effect is linked to the beam

profile, scanned by the flowing particles; if this profile is approximated by a

Gaussian curve, we obtain

|g1,T (~q, t)|2 = exp
[
−(νtrt)

2
]
. (3.13)

The shear-rate effect, finally, is due to the fact that the particles do not have

the same velocity when γ̇ is not zero. Therefore Doppler-shifts are observed

in the frequency of X-rays scattered from particles with different velocities.

In order to obtain an analytical form for this contribution to the correlation
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function, a double integral over the scattering volume on pairs of particles

needs to be solved; the solution is:

|g1,S (~q, t)|2 =
sin q||v0t

q||v0t
(3.14)

for uniform shear rate (Couette geometry), or

|g1,S (~q, t)|2 =
π2

16q||v0t

∣∣∣∣∣erf
√

4iq||v0t

π

∣∣∣∣∣

2

(3.15)

for a parabolic velocity profile (Poiseuille flow).

It is important to note that the terms q||v0 is equal to the scalar prod-

uct ~q · ~v0. When the exchanged momentum ~q is perpendicular to flow, the

second and third terms in the exponent of equation (3.12) vanish, therefore

(3.12) becomes equal to (3.11). In the same approximation, |g1,S (~q, t)|2 and

|g1,S (~q, t)|2 are zero, while the term |g1,T (~q, t)|2 is usually negligible. There-

fore, using an experimental geometry where the scattering vector is perpen-

dicular to the flow is perfect in order to measure directly the dynamics of the

sample, since the introduction of flow-induced effects is avoided.

In figure 3.13, reported in [24], the effects of flow over the correlation time

τ are shown; τ was detected using a geometry where ~q was perpendicular to

the direction of the flow itself. At low flow rates the q2 dependence expected

for Brownian dynamic is observed, while at higher flow the influence of both

transit time and shear effects is detected.

During our experiment, a geometry with q|| = 0 was used: a perfect

alignment is generally not achievable, thus shear induced effects were seen

working at higher flow rates even in this configuration. Anyway, operating

at low flow rates, the diffusive dynamics of the particles can be measured as

in a normal experiment.
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Figure 3.13: Correlation time τ multiplied by q2, as a function of q, in a

q|| = 0 geometry. At low flow rates, no influence is detected: therefore we

are measuring the diffusive dynamics of the particles. From [24].



Chapter 4

Experimental Results

4.1 Structure of hard-sphere suspensions

After a first characterization of our colloidal suspension, having measured

its viscosity and the Einstein-Stokes diffusion coefficient D0, we started the

analysis of its static and dynamical properties as a function of the concen-

tration of particles, represented by the volume fraction Φ. The static charac-

terization of our sample was performed by means of SAXS at the beamlines

ID10A and ID02 of ESRF: in other words, our first aim consists of exactly

knowing what kind of suspension we are looking at. As previously explained,

the size distribution of particles and the volume fraction of the suspension

are assessable through this technique.

During sample preparation, particular care was paid to avoid any alter-

ation of the mean radius and polydispersity. Since preparing concentrated

samples by centrifugation may lead to a gradient of sizes, and during the

subsequent elimination of the upper layer of solvent, smaller particles can be

eliminated as well, centrifugation was not applied.

As a detector we used the CCD, because of the large exchanged mo-

mentum range achievable in a single shot and of its high resolution: with a

judicious choice of sample-to-detector distance (d = 2.19m) we could measure

in the Q range from Q ≃ 0.001Å−1 up to Q ≃ 0.03Å−1.

69
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Figure 4.1: SAXS measurement. Top-left: 300 images were taken, then

averaged. Top-right: the average intensity constancy is checked. Bottom:

Saxs measurement; the image radial average as a function of Q.

A beamstop is interposed between the detector and the direct beam to

avoid damage. Since the low-Q limit is determined by the beamstop position

relative to the direct beam, sometimes the measurement starts from a too

high value of Q, losing fundamental informations on the structure of the sam-

ple. In these cases, we integrated the SAXS patterns with those measured

by the point detector, although its resolution is lower. Using CCD (figure

4.1), normally 300 frames were collected to compensate its limited dynamical

range. Frames were then summed together pixel by pixel, obtaining a single

pattern. A radial average is performed around the centre of the beam, which

is obtained taking an image without the beamstop and with attenuators into
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the beam path. Bad pixels were masked, and a measurement without light

is subtracted in order to eliminate spurious effects. Intensity as a function of

Q can be fitted with the models described in chapter 2.1, giving access to all

these parameters that describe the sample from a static point of view, thus

obtaining the structure factor S(Q), which will be useful in the successive

analysis. The importance of this factor, containing information on interpar-

ticle interactions, increases as the volume fraction Φ grows, while it is nearly

equal to one at low concentrations.

It is not yet possible to directly compare the results of our SAXS exper-

iment with the model for the scattered intensity, since we need to subtract

the scattering contribution due to both the solvent and the kapton tubes.

Then, we must add to the model the influence of instrumental resolution

over the detected intensity. This is usually done in literature by performing

a convolution of the hard-sphere form factor with a Gaussian profile, whose

width is linked with the uncertainty over the exchanged momentum.

Data are fitted with the expression, reported in chapter 2.1,

I(Q) = K S(Q) P (Q) (4.1)

where K is a scale factor, P (Q) is the form factor of a sphere and S(Q)

is the structure factor. The mean value R and the standard deviation

σ = R/
√
Z + 1 of the particle’s radius R are parameters of the fits, while

sample volume fraction Φ is a manually varied parameter. Structure fac-

tor determination is the main goal of this measurement: it can be obtained

computing the ratio between I(Q) and the scaled form factor K P (Q), con-

voluted with a Gaussian profile; we can call it ”measured structure factor”.

This curve can be compared with the S(Q) expected, in the Percus-Yevich

approximation, for spherical particles interacting as hard-spheres.

Another model we could have used was the analytical expression for I(Q),

reported in [4], where the factorization between S(Q) and P (Q) is not made:

a fit performed using said model does not provide a determination of the

structure factor, although R and Φ can be determined with higher precision.

Since the core-shell particles model does not lead to significant improvements
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despite the higher number of parameters, as previously mentioned in chapter

(2.1.2), it is not used in this analysis and the Percus-Yevich hard-sphere

model is the only one considered.

In figures 4.2a, 4.3a, 4.4a, 4.5a, 4.6a, 4.7a and 4.7a SAXS patterns and

fits are reported for samples characterized by a volume fraction up to around

50%. Figures 4.2b, 4.3b, 4.4b, 4.5b, 4.6b, 4.7b and 4.8b contain both the

”measured” and the expected structure factor.
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Figure 4.2: A631D D sample. a) Best fit over the green region of the curve,

with R = (881±3)Å; Z = 99±6; Φ = 9.5%; b) Structure factor; the continue

curve is the expected S(Q), the dotted one is the ”measured structure factor”.

As we can see, the pattern is better fitted in the high Q region, while

there are some problems in the low Q region, the problem being that either

the low Q region or the high Q can be fitted well. Our attempt to overcome

this problem by doing a convolution of the model with a Gaussian profile is

not sufficient. Trying to fit the curve profile for Q > 0.005Å−1 in a better

way, gives a wrong height of the structure peak. On the other hand, trying

to get a better fit in the low-Q region leads to bad results in the remaining

part of the curve; a balanced approach is therefore needed. We decided to

fit only over the first two maxima after the structure peak. Since in the

following analysis the main information we will need is the peak’s position
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Figure 4.3: A631D C sample. a) Best fit over the green region of the curve,

with R = (893± 3)Å; Z = 105± 6; Φ = 19.5%; b) Structure factor; the con-

tinue curve is the expected S(Q), the dotted one is the ”measured structure

factor”.
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Figure 4.4: A631D E sample. a) Best fit over the green region of the curve,

with R = (908±3)Å; Z = 99±4; Φ = 21.5%; b) Structure factor; the continue

curve is the expected S(Q), the dotted one is the ”measured structure factor”.
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Figure 4.5: A631D P sample. a) Best fit over the green region of the curve,

with R = (905± 3)Å; Z = 107± 4; Φ = 30.5%; b) Structure factor; the con-

tinue curve is the expected S(Q), the dotted one is the ”measured structure

factor”.
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Figure 4.6: A631D F sample. a) Best fit over the green region of the curve,

with R = (901±3)Å; Z = 96±2; Φ = 35.2%; b) Structure factor; the continue

curve is the expected S(Q), the dotted one is the ”measured structure factor”.
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Figure 4.7: A631D A sample. a) Best fit over the green region of the curve,

with R = (901±3)Å; Z = 90±5; Φ = 44%; b) Structure factor; the continue

curve is the expected S(Q), the dotted one is the ”measured structure factor”.
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Figure 4.8: A631D G sample. a) Best fit over the green region of the curve,

with R = (896±5)Å; Z = 84±8; Φ = 50.5%; b) Structure factor; the continue

curve is the expected S(Q), the dotted one is the ”measured structure factor”.
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only, and we can therefore accept some discrepancy in the determination

of the intensity, we tried to obtain compatible values of R and Z for every

sample. Concentration estimations comply with the expected values.

sample nominal Φ Φ R (Å) Z σ (Å)

A361D D 10% 9.5% 881 ± 3 99 ± 6 88 ± 3

A361D C 19% 19.5% 893 ± 3 105 ± 6 86 ± 3

A361D E 22% 21.5% 908 ± 3 99 ± 4 90 ± 2

A361D F 30% 30.5% 905 ± 3 107 ± 4 87 ± 2

A361D P 35% 35.2% 901 ± 3 96 ± 2 91 ± 2

A361D A 45% 44% 901 ± 3 90 ± 5 94 ± 3

A361D G 50% 50.5% 896 ± 5 84 ± 8 97 ± 5

We obtained a ”measured” S(Q) different from the Percus-Yevich the-

oretical prediction for hard spheres. This is probably an indication that

hard spheres approximation fails for our system, although an alternative ex-

planation could be related to experimental problems at low Q. Anyway, an

indication that our sample is effectively made of spheres comes from the com-

parison of the so-called hydrodynamical radius Rh = kBT
6πηD0

with the radius

obtained from SAXS. For our sample, Rh ≃ 930 Å: since it is slightly greater

than the R measured by fitting data with the hard sphere model, our sample

likely does not contains broken spheres of other non-spherical particles.

4.2 Dynamics of hard-sphere suspensions

The second part of this work is focused on particle motion and interac-

tions. Since we are performing measurements in a region of the reciprocal

space where QR < 10, we are mainly considering interactions between par-

ticles separated by a distance d > 2πR
10

= 0.6R ≃ 60nm. The dynamics of

nanoparticles in a solvent displays three different regimes:

• the ballistic regime, when we consider a time short enough over which

the colloidal particle behaves, after a collision, as a free particle;
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• the Brownian ”short time” regime, when the particle moves around its

equilibrium position: in this case the motion is diffusive and has not

been slowed down by interparticle interactions;

• a long-time regime with diffusive motion, when the particle moves on

even greater distances and its motion is affected by the so-called ”cage”

effect due to the presence of surrounding particles.

This work is focused only on the ”short-time” regime. The separation is

given by the time-scale characterizing the diffusion, and by its confrontation

with relevant time-constants defined by some static parameters like radius

(R), mass of the particle (m), temperature (T ) and viscosity (η). We can

define two relevant time-constants:

• the first is the so-called Brownian relaxation time, τB = mD0/kBT ≃
1ns: this is the time a particle takes, after a collision, to lose an energy

comparable with the thermal excitation energy kBT while interacting

with the solvent. Therefore, it is the time after which the definition of

the diffusion coefficient is meaningful;

• the second one is the time a particle needs to diffuse freely over a

distance equal to its radius, and can therefore be defined as τR =

R2/D0 ≃ 9ms.

When τB < τ < τR, we have the ”short time” regime; the ”long time”

one occurs when τ > τR. The investigation of the ”ballistic” regime is not

possible by XPCS, since detector that can reach detection times shorter than

τB are not available. In brief, we are looking, during a time shorter than

the time needed to diffuse over a distance comparable with the radius, at

the dynamics and interactions among particles separated by distances much

greater than their radius.

XPCS measurements of the correlation functions were performed at vari-

ous values of Q, corresponding to a region up to the second relative maximum
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in the intensity profile, where QR < 6. On the one hand, in very low con-

centration samples the correlation function decay is an exponential:

g(2)(τ) = 1 +

∣∣∣∣∣
F ( ~Q, t)

F ( ~Q, 0)

∣∣∣∣∣

2

= 1 + e−2D0Q2t.

where D0 is the usual Einstein-Stokes coefficient.
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Figure 4.9: Correlation functions at Φ = 10% and Φ = 50%. In the high-Φ

curve, two different time-scales are visible: the fit is performed only at short

times, in the first region.

On the other hand, at higher concentrations, this no longer applies: a

Q-dependence has to be introduced for the diffusion coefficient DS(Q). If we

plot, like in figure 4.9, a correlation function measured at a high concentration

in a semi-logarithmic scale, we can see that it presents the two different

time scales. This recalls the presence of the two different diffusion regimes,

previously referred to as ”short time” and ”long time” regimes, discriminated

by the characteristic time τR. Therefore, through exponential fitting over
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the τ < τR region we obtain a measure of DS(Q). This measurement was

performed at different flow-rates, ranging from zero up to 800µL/h and even

1600µL/h. If results obtained with small flow-rates are compatible with

those observed without flow, then neither cavitation nor ageing effects are

present. Moreover, if low-flow-rate data are consistent with one another while

the flow-zero curve shows a different behaviour, this means that the latter is

not completely trustworthy. High-flow-rate data usually present flow-induced

effects, and are therefore not suitable for the subsequent analysis.

While analysing DS(Q), it is useful to set aside the contribution of direct

interactions, represented by the structure factor S(Q) we obtained through

SAXS analysis. Since we are looking at times shorter than the time τR

necessary to diffuse over a distance of a particle radius, we can consider

nanoparticles in motion just around their equilibrium position during the

measurements. In this situation, structural and hydrodynamical effects can

be separated by a factorization of DS(Q)/D0, as reported in [5]:

DS(Q)

D0
=
H(Q)

S(Q)
(4.2)

D0 was measured by DLS, S(Q) by SAXS and DS(Q) by XPCS, we have a

measurement of the so-called hydrodynamic function H(Q), which represents

the interparticle interaction due to solvent motions as effect of the movement

of the other particles and of the particle itself. A model for H(Q) as a func-

tion of suspension volume fraction has been developed by Beenakker and

Mazur: in reference [6] they studied the self-diffusion contribution giving rise

to a Q independent term, while in [7] many-body hydrodynamics interactions

are taken into consideration leading to the Q-dependent contribution. The

calculation is lengthy and fairly complicated, and it is not reported here: any-

way, the final expression requires numerical integration which was performed

as part of the tasks of the present thesis work. The results are reported in

figure 4.10, similar to figure 2 in [7].



4.2 Dynamics of hard-sphere suspensions 80

 0  5  10
0.0

0.5

1.0

QR

H
(Q

)

Φ = 0.05

Φ = 0.15

Φ = 0.25

Φ = 0.35

Φ = 0.45

Figure 4.10: Model for the hydrodynamic function at different concentra-

tions.

4.2.1 Results

In figures from 4.11 to 4.17, each one referring to one sample, DS(Q)

normalized to the Einstein-Stokes constant is reported, and the correspond-

ing structure factor is displayed as well. Data taken with sample flowing at

100µL/h are highlighted since this flow-rate fulfils the requirements stated

above: cavitation and ageing effects are avoided.

Note that in each figure the first relative minimum corresponds to the

position of the maximum in S(Q), Qmax: this means a slowing down of the

dynamics in correspondence of the structure’s peak. The suspension’s density

fluctuations with wavelength 2π
Q

decay in an exponential way, except for those
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Figure 4.11: A361D D sample, Φ = 9.5%. Q dependence of DS(Q) normal-

ized to D0. The measured structure factor S(Q) is reported for comparison.

with a wavelength similar to 2π
Qmax

that are more likely to persist: their decay

takes place with a slower characteristic time. This effect is closely resemblant

the so called ”de Gennes narrowing”, well known in the literature [8]. It

consists in an energy narrowing of the quasielastic neutron scattering as a

function of the exchanged momentum Q in correspondence of the maximum

in the structure function S(Q). Its physical origin relies on the fact that the

dynamic of the system tends to be slower in correspondence of its structural

periodicities, in other words, the system tends to preserve its coherence at

that particular Q value by reducing the corresponding dynamics.

As we can see in figures 4.11 and 4.12, the low concentration samples

”A361D D” and ”A361D C” show problems of data dispersion among curves

relative to different flow-rates. In particular, an oscillation pattern common

to every flow-rate is not present, while higher concentration samples do not

present this problem and the oscillation patterns of S(Q) and DS(Q) are

in clear agreement. The ”A361D C” sample was not considered in further

analysis of the hydrodynamic function H(Q), since its concentration Φ ≃
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Figure 4.12: A361D C sample, Φ = 19.5%. Q dependence of DS(Q) normal-

ized to D0. The measured structure factor S(Q) is reported for comparison.
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Figure 4.13: A361D E sample, Φ = 21.5%. Q dependence of DS(Q) normal-

ized to D0. The measured structure factor S(Q) is reported for comparison.
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Figure 4.14: A361D P sample, Φ = 30.5%. Q dependence of DS(Q) normal-

ized to D0. The measured structure factor S(Q) is reported for comparison.
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Figure 4.15: A361D F sample, Φ = 35.2%. Q dependence of DS(Q) normal-

ized to D0. The measured structure factor S(Q) is reported for comparison.
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Figure 4.16: A361D A sample, Φ = 44.0%. Q dependence of DS(Q) normal-

ized to D0. The measured structure factor S(Q) is reported for comparison.
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Figure 4.17: A361D G sample, Φ = 50.5%. Q dependence of DS(Q) normal-

ized to D0. The measured structure factor S(Q) is reported for comparison.
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19% was very similar to the one of the ”A361D E” sample, Φ ≃ 21%.

volume fraction
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Figure 4.18: H(Q) at different concentrations. The continuous lines represent

Beenakker and Mazur’s predictions. Error bars came from statistical analysis

of correlation functions (chapter 3.2) and of S(Q).

We can now calculate the hydrodynamic function H(Q) introduced in

equation (4.2) to represent every other contribution to the diffusion, in par-

ticular interactions through the liquid medium, called ”hydrodynamical” in-
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teractions. In figure 4.18 data measured at various concentrations relative to

the 100µL/h flow-rate are reported. The sole exception is given by sample

A361D E since, although it is a low-concentration sample, in principle not

affected by cavitation problems, it displays a Q dependence not compati-

ble with the no-flow curve. For the A361D E sample the no-flow points were

used. These values of H(Q) are compared to the theoretical curves calculated

for the respective values of R, Z and Φ, following [6] and [7].

It is clear how at low concentration the predicted hydrodynamical func-

tion is fairly unstructured, while at high volume fractions the theoretical

H(Q) shows a first maximum at QR ≃ 3 and a subsequent minimum at

QR ≃ 4.5; this behaviour is reasonably well reproduced by our experimental

data. At Φ = 44%, the sample’s dynamics begins to arrest, therefore we can

see a clear deviation of data from the expected behaviour. At Φ = 50% the

sample is no longer fluid but it appears more like a gel, and obviously apply-

ing a theory developed for particles suspended in a liquid leads to completely

wrong theoretical conclusions.

4.3 Future work on hard spheres dynamics

The results reported in this work are but a first step in the investigation

of the dynamical properties of hard spheres. A further step forward could be

represented by the analysis of the ”long time” regime, defined in chapter 4.1.

This task involves looking at the correlation functions in the region τ > τR,

with particles travelling on longer distances and therefore being affected by

the so-called ”cage” effect. Moreover, the theoretical model which provides

an expression for the hydrodynamic function H(Q) is developed only for the

”short time” regime, while a computational approach is not viable, because

of the huge number of particles involved in this regime.



Chapter 5

Time-resolved studies in flow

devices

In this section we report some applications of microfluidic techniques

to time-resolved measurements or studies in a confined volume which I con-

tributed to test and develop during my stay at ESRF under the supervision of

Andrei Fluerasu from ESRF, working with Jean-Baptiste Salmon and Fanny

Destremaut from Bordeaux CNRS, and with ID10A staff. Although not di-

rectly related to hard spheres dynamics, the following examples can show how

microfluidics is powerful, an provide new ideas for further improvements.

5.1 Emulsion droplets: SAXS

Silica hard spheres are often used for calibration during XPCS experi-

ments, because of their well-known Brownian behaviour in diluted solutions.

In this section, a simple application of microfluidic devices is shown: a SAXS

measurement of the static properties of a suspension of charge stabilized sil-

ica particles in water, by forming a droplet which is flowing in an oil stream

(figure 5.1). We want to prove that performing this kind of measurements

on a confined system is possible with a very simple experimental setup, and

that the presence of the flow does not influence the results. The following

87
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is also a good example of what kind of information can be obtained from

a SAXS measurement even if information is missing, especially at very low

exchange momentum.

Figure 5.1: Droplets of sample flowing in oil, into a 1mm tube. Photo taken

at ID10A.

We used silica particles (diameter ≃ 0.5µm) purchased from Duke Scien-

tific Corporation, California, suspended in water. With three syringes, and a

tube-in-tube-in-tube setup, the desired sample was formed directly into the

flowing device, completely avoiding unwanted ageing effects and automati-

cally defining the instant at which the components start to mix as t0 = 0

(figure 5.2).

Sample droplets were formed with a frequency f = 0.4Hz; the sample

was injected at various flow-rates using a first syringe, while water was added

to the sample using a second one, reaching a total flow rate of 1ml/hour.

The volume of one droplet was obtained multiplying frequency and sample’s

flow rate.

Because of beamstop position, we have limited our analysis to QR > 7,

hence S(Q) is constant. The diffracted intensity was fitted using only the

form factor model for polydisperse particles from chapter (2.1.2).

In figure 5.3, the scattered intensities at various silica’s flow rates are

reported, along with relative fits. Increasing the flow rate of water, we could

change he concentration of suspended silica particles. Then, the volume

fraction was calculated using equation (2.8): the linear relation between the
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Figure 5.2: Triple syringe configuration was used in order to create flowing

droplets of sample with concentration given by the ratio between the flow

rates of stock sample and water.

concentration and the flow rate is clear.

This particular example demonstrates that performing SAXS on a droplet

of sample flowing in a tube is possible, obtaining the same information we get

during a usual experiment. Further developments of this technique include

the study of a self-assembly process as it occurs: the process begin only when

reactants are mixed directly in the tube by the three-syringe device, forming

a bubble that starts to flow. Doing SAXS at different beam positions along

the tube, we can obtain information about shape and dimensions of newly

forming aggregates.

5.2 Gel formation

The aim of this second example of microfluidic experiment was to study

the gel formation process. We used two syringes and a tube-in-tube config-

uration similar to the one in figure 5.2, where each syringe is filled with a

component of the gel-forming system. Adjusting the flow rates of the syringes

so as to mix the components directly in the tube to the desired percentage,

we were able to clearly define the zero-time of the experiment.
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In this example, one of the syringes was filled with a suspension of PMMA

particles in decalin, the other one with a suspension of polystyrene in decalin.

Soon after mixing, the presence of free polymers in the solvent triggers

aggregation of particles by introducing new attractive forces: that is why

this sample undergoes a gel-forming process (figure 5.4). Free non-adsorbing

polymers added to the colloidal dispersion behave as random coils with a

radius of gyration rg. On average, they are excluded from a shell of thickness

rg around the colloidal particle, called the depletion zone. When two colloidal

particles are brought together, these depletion zones overlap and the total

volume accessible for the polymers increases. The free volume entropy of

the system increases, and therefore aggregation is thermodynamically eased.

This is the so-called depletion force. The range of the attraction is directly

Figure 5.3: Silica particles in water droplets: SAXS measurements at dif-

ferent flow rates. In the smaller frame it is reported the volume fraction

obtained from fitting as a function of silica particles’ flow rate.
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Figure 5.4: PMMA hard spheres, sterically stabilized, and polystyrene in

decalin. Depletion force leads to gel formation.

related to the radius of gyration , whereas the strength is proportional to the

osmotic pressure of the polymers.

The correlation functions were measured at different positions along the

tube with known distances from the components mixing point z0, labelled

from z1 to z4, as presented in figure 5.5. Only exchanged momentum ~Q

perpendicular to the flow direction is considered. As it was for Φ ≃ 50%

sample (figure 4.18), the gel formation hinders the dynamics of the system.

We observed a change in correlation functions with respect to the simple

exponential form of equation 2.25. In literature, this correlation functions

are usually fitted with a ”stretched” exponential,

g(2) = 1 + exp(−2Γt)γ . (5.1)

We can detect deviation from the hard-sphere behaviour simply looking at the

two fitting parameters: particles moving in a Brownian way present Γ ∝ Q2

and γ = 1. In figure 5.6 and 5.7, Γ and γ as functions of the exchanged
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Figure 5.5: PMMA hard spheres, sterically stabilized, and polystyrene in

decalin. SAXS patterns and correlation functions are measured at different

beam positions along the tube.

momentum are reported, measured a couple of hours after the beginning of

the flow experiment in position z1 and z4.

Figure 5.6: Stretched exponential parameters Γ(Q) and γ(Q) detected with

beam position at 0.75mm from the point where the components of the gel

are mixed.

The most evident change detected in correlation functions is related to

the Γ parameter. Its Q dependence decays from the parabolic behaviour
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Figure 5.7: Stretched exponential parameters Γ(Q) and γ(Q) detected with

beam position at 2.75mm from the point where the components of the gel

are mixed.

characteristic of Brownian motion to a linear one while gel formation takes

place. The meaning of this hyperdiffusive behaviour is still controversial.

Some studies suggest a relaxation rate Γ ∝ Q1 which corresponds, in real

space, to a mean square displacement < δx2 > of a particle proportional to

t2 - where t is the elapsed time - and not to t1, as in Brownian motion. In

literature, some scientists tend to associate this hyperdiffusive behaviour to

”jamming”.

One big problem we experienced with gel forming directly into the tube

is the possible occlusion of the tube. Due to this, the measurement had to

be interrupted and the tube replaced. An example is reported in figure 5.8.

The microfluidics three-syringes configuration allows XPCS measurements

on flowing droplets of sample, preventing the obstruction of the tube: the

unique requirement is the measurement time, related to the motion of the

droplets, being longer than the dynamics characteristic time. Creating longer

droplets is a possible way to increase the measurement time without decreas-

ing too much the velocity of the droplets, since a too low flow rate may

lead to cavitation effects. Measuring the dynamics of a colloidal system in a

droplet is a task that can not be accomplished without some previous con-

siderations: we do not know if in the droplet the colloidal particles behave

as in the bulk. They could move towards the surface, or the surface could
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Figure 5.8: Uncontrolled gel formation. The tube is completely obstructed.

modify the dynamics. These tasks could be part of a basic agenda for future

work.



Chapter 6

Conclusions

During several experimental sessions at ID10A, ESRF, we observed, on

a system consisting of PMMA stabilized particles in decalin, the expected

hard-sphere behaviour, at different concentrations from roughly 30% up to

around 50%. We were able to measure the so-called hydrodynamic function

H(Q) and to compare it to theoretical models.

By means of SAXS we measured, initially, the characteristics of the sam-

ple, like particle radius, sample concentration and polydispersity, then we

obtained information about inter-particle interactions from the Static Struc-

ture Factor S(Φ, Q). The S(Φ, Q) dependence from both the volume fraction

of the sample Φ and the exchanged momentum Q is in good agreement with

what is expected from the Percus-Yevich hard-sphere model.

A statistical analysis of XPCS led to an analytical, although approxi-

mated, expression for the standard deviation of the intensity-intensity corre-

lation function. This was necessary in order to achieve a complete quantita-

tive measurement. We concentrated our efforts on the dynamics that takes

place during the time a particle needs to diffuse over a distance comparable

with its radius.

The Stokes-Einstein’s diffusion coefficient D0 was measured by Dynamic

Light Scattering, characterizing particle Brownian motion in low-concentration

samples.
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In order to avoid cavitation induced by the X-ray beam, the experiments

were carried out with the sample flowing in a microfluidic device: keeping

the exchanged momentum Q perpendicular to the flow and using low flow

rates, we avoided any flow-induced effect over the measured quantities. While

developing the necessary theory and all the experimental devices, we explored

qualitatively other opportunities opened by the use of microfluidics in X-ray

studies, like time-resolved studies or measurements in a confined volume.

In samples with higher volume fraction, the diffusion coefficient DS(Q)

was measured by XPCS: it was no longer constant, since it showed an oscil-

latory behaviour analogous to that of the structure factor. Moreover, DS(Q)

has a minimum in correspondence of the structure peak: this effect is the so-

called ”de Gennes narrowing”. Trying to set aside the influence over dynam-

ics given by the direct inter-particle interactions, we multiplied the measured

diffusion coefficient by S(Q), obtaining a function which in principle contains

every other possible dependence from the exchanged momentum. We noted

that H(Q) was in line with the one obtained from a model by Beenakker and

Mazur [7] that takes into account the interactions mediated by the solvent

in which the particles are suspended.

In high-concentration arrested regime, DS(Q) was sensibly smaller than

its expected value for the ”sol” regime/state: when the volume fraction was

close to 50% the dynamic started to arrest, the sample looked like a gel and

therefore the measured H(Q) was totally different from the expected one.
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